We classify all R‐separable coordinate systems for the equations Δ4Ψ=𝒥4i, j=1g−1/2j(g1/2gijiΨ) =0 and 𝒥4i, j=1gijiWjW =0 with special emphasis on nonorthogonal coordinates, and give a group theoretic interpretation of the results. For flat space we show that the two equations separate in exactly the same coordinate systems and present a detailed list of the possibilities. We demonstrate that every R‐separable system for the Laplace equation Δ4Ψ=0 on a conformally flat space corresponds to a separable system for the Helmholtz equations Δ4Φ=λΦ on one of the manifolds E4, S1×S3, S2×S2, and S4.

1.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
Trans. Am. Math. Soc.
244
,
241
(
1978
).
2.
H. P.
Robertson
,
Math. Ann.
98
,
749
(
1927
).
3.
L. P.
Eisenhart
,
Ann. Math.
35
,
284
(
1934
).
4.
C. P.
Boyer
,
E. G.
Kalnins
, and
W.
Miller
, Jr.
,
Commun. Math. Phys.
59
,
285
(
1978
).
5.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
Proc. R. Soc. Edinburgh Sect. A
79
,
227
(
1977
).
6.
C. P.
Boyer
,
E. G.
Kalnins
, and
W.
Miller
, Jr.
,
Trans. Amer. Math. Soc.
242
,
355
(
1978
).
7.
E. G. Kalnins and W. Miller, Jr., J. Diff. Geom. (to appear 1980).
8.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
J. Phys. A
12
,
1129
(
1979
).
9.
E. G. Kalnins and W. Miller, Jr., J. Math. Anal. Appl. (to appear).
10.
L. P. Eisenhart, Riemannian Geometry, 2nd printing (Princeton U.P., Princeton, 1949), pp. 89–92.
11.
W. Miller, Jr., Symmetry and Separation of Variables (Addison‐Wesley, Reading, Mass., 1977).
This content is only available via PDF.
You do not currently have access to this content.