In this paper we study the scattering of a plane electromagnetic wave off a spherical plasma pellet. The plasma density is taken to be overdense and very steep. This causes the cut off radius, r0, to be within a fraction of a wavelength from the spherical boundary. The problem is studied in the asymptotic limit (aω/c)→ ∞ with 0<1−r0=O(c/aω). Here a is the radius of the sphere, ω is the frequency of the incident radiation, and c is the velocity of light in free space. We develop an asymptotic technique which reduces Maxwell′s equations to three ordinary differential equations within the plasma. Our method is a blend of geometrical optics and boundary layer techniques. Straightforward geometrical optics is used to describe the scattered field.

1.
K. A.
Brueckner
and
Siebe
Jornal
,
Rev. Mod. Phys.
46
,
325
(
1974
).
2.
F. F. Chen and R. B. White, “Amplification of Electromagnetic Waves in Overdense Plasma,” UCLA Plasma Physics Group Report 126, 1972.
3.
V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1961).
4.
J. J.
Thomson
,
C. E.
Max
,
J.
Erkkila
, and
J. E.
Tull
,
Phys. Rev. Lett.
37
,
1052
(
1976
).
5.
N. G.
Alexopoulos
,
Radio Sci.
6
,
893
(
1971
).
6.
G. A.
Kriegsmann
, “
On the scattering of plane electromagnetic waves off cylindrically confined cold plasmas with overdenses and steep densities
,”
J. Math. Phys.
21
,
1251
(
1980
).
7.
J. B.
Keller
and
B. D.
Seckler
,
J. Acoust. Soc. Am.
31
,
192
(
1958
).
8.
J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, 1968).
9.
J. P.
Freidberg
,
R. W.
Mitchell
,
R. L.
Morse
, and
L. I.
Rudinski
,
Phys. Rev. Lett.
28
,
795
(
1972
).
10.
J. Brandstatter, An Introduction to Waves, Rays, and Radiation in Plasma Media (McGraw‐Hill, New York, 1963).
11.
E. T. Copson, Asymptotic Expansions (Cambridge U.P., Cambridge, 1967).
12.
E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966).
13.
D. S. Jones, The Theory of Electromagnetism (Pergamon, New York, 1964).
This content is only available via PDF.
You do not currently have access to this content.