The most general possible noninertial acceleration in special relativity is formulated with differential forms in the cotangent bundle. We show that the Lie derivative plays the same role in the cotangent bundle that the covariant derivative plays in the tangent bundle. We also show that a cotangent bundle analog of Fermi–Walker transport can be based upon the, ’’cotangent‐geodesic’’ equation, ℒuω=0. This gives a generalization of the work by Kiehn on classical Hamiltonian mechanics to special relativity.
REFERENCES
1.
B.
Defacio
, P. W.
Dennis
, and D. G.
Retzloff
, Phys. Rev. D
18
, 2813
(1978
);B.
Defacio
, P. W.
Dennis
, and D. G.
Retzloff
, Phys. Rev. D
20
, 570
(1979
).2.
3.
4.
Y.
Avashai
, H.
Ekstein
, and J. E.
Moyal
, J. Math. Phys.
13
, 1139
(1972
).5.
6.
P.
Havas
and J.
Plebański
, J. Math. Phys.
19
, 482
(1978
); see, e.g., Ref. 22.7.
F. B. Estabrook, in Bäcklund Transformations, the Inverse Scattering Method, Solitons and Their Applications, edited by R. M. Miura, Springer‐Verlag Lecture Notes in Mathematics (Springer, New York, 1976), Vol. 515.
8.
9.
10.
11.
12.
13.
14.
J.
Corones
, B. L.
Markovski
, and V. A.
Rizov
, J. Math. Phys.
18
, 2207
(1977
).15.
16.
17.
18.
19.
20.
21.
22.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
23.
D. G. Retzloff, B. DeFacio, and P. W. Dennis, (in preparation, J. Math. Phys.).
24.
A. Weinstein, Lectures on Symplectic Manifolds (Am. Math. Soc., Providence, Rhode Island, 1976).
25.
R. W. Tucker, Rutherford Laboratory Report (February 1976, unpublished) and
P. A.
Collins
, J. F.
Hopkinson
, and R. W.
Tucker
, Nucl. Phys. B
103
, 67
(1976
).26.
R. W. Tucker and P. S. Howe (unpublished).
27.
P. S. Howe and R. W. Tucker, TH‐2524‐CERN Preprint (June 1978).
28.
R. Herman, Interdisciplinary Mathematics (Math. Sci., Brookline, Massachusetts, 1974–1979), Vols. I–XIX.
29.
H. Flanders, Differential Forms (Academic, New York, 1963).
30.
E. Cartan, Systems differentiels exteriers et leurs applications geometriques (Act. Sci. et Ind. 994, Paris, 1945).
31.
B. O’Neil, Elementary Differential Geometry (Academic, New York, 1966).
This content is only available via PDF.
© 1980 American Institute of Physics.
1980
American Institute of Physics
You do not currently have access to this content.