Two‐dimensional lump solutions which decay to a uniform state in all directions are obtained for the Kadomtsev–Petviashvili and a two‐dimensional nonlinear Schrödinger type equation. The amplitude of these solutions is rational in its independent variables. These solutions are constructed by taking a ’’long wave’’ limit of the corresponding N‐soliton solutions obtained by direct methods. The solutions describing multiple collisions of lumps are also presented.

1.
See for example, “Nonlinear Dispersive Waves,” Series of Selected Papers in Physics, 59, edited by N. Yajima, and N. Kakutani, (Phys. Soc. Japan, 1975).
2.
An account of IST is found in
M. J.
Ablowitz
,
D. J.
Kaup
,
A. C.
Newell
, and
H.
Segur
,
Stud. Appl. Math.
53
,
249
(
1973
).
3.
B.
Kadomtsev
, and
V.
Petviashvili
,
Sov. Phys. Dokl.
15
,
539
(
1970
);
M.
Oikawa
,
J.
Satsuma
, and
N.
Yajima
,
J. Phys. Soc. Jpn
37
,
511
(
1974
);
D. J.
Benney
, and
G. J.
Roskes
,
Stud. Appl. Math.
1
,
377
(
1969
);
A.
Davey
, and
K.
Stewartson
,
Proc. R. Soc.
388
,
191
(
1974
);
N. C.
Freeman
and
A.
Davey
,
Proc. R. Soc. London, Ser. A
344
,
427
(
1975
);
V. D.
Djovdjevic
, and
L. G.
Redekopp
,
J. Fluid Mech.
79
,
703
(
1977
);
M. J. Ablowitz and H. Segur (preprint, 1978).
4.
V. E.
Zakharov
and
A. B.
Shabat
,
Funct. Anal. Appl.
8
,
226
(
1974
).
5.
M. J.
Ablowitz
and
R.
Haberman
,
Phys. Rev. Lett.
35
,
1185
(
1975
).
6.
J.
Satsuma
,
J. Phys. Soc. Jpn.
40
,
286
(
1976
).
7.
D.
Anker
and
N. C.
Freeman
,
Proc. R. Soc. London, Ser. A
360
,
529
(
1978
).
8.
M. J.
Ablowitz
and
J.
Satsuma
,
J. Math. Phys.
19
,
2180
(
1978
).
9.
S. V.
Manakov
,
V. E.
Zakharov
,
L. A.
Bordag
,
A. R.
Its
, and
V. B.
Matveev
,
Phys. Lett. A
63
,
205
(
1977
).
10.
R. Hirota, Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, edited by R. M. Miura (Springer, New York, 1976), p. 40.
This content is only available via PDF.
You do not currently have access to this content.