The contractions of Lie groups and Lie algebras and their representations are studied geometrically. We prove they can be defined by deformations in Poisson algebras of symplectic manifolds on which the groups act. These deformations are given by Dirac constraints which induce on C functions on the deformed manifold an associative twisted product, characterizing the contracted group or its representations. We treat the contractions of SO(n) to E(n) and apply this theory to thermodynamical limits in spin systems.

1.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternheimer
,
Lett. Math. Phys.
1
,
521
30
(
1977
).
2.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternheimer
,
Ann. Phys. (N.Y.)
111
,
61
110
111
51
, (
1978
).
3.
D.
Arnal
and
J. C.
Cortet
,
Lett. Math. Phys.
1
,
505
12
(
1977
).
4.
A.
Lichnerowicz
,
Lett. Math. Phys.
2
,
133
43
(
1977
).
5.
N. Bourbaki, Eléments de Mathématiques, Fasc. XXVI (Hermann, Paris, 1971).
6.
M.
Flato
,
A.
Lichnerowicz
, and
D.
Sternheimer
,
J. Math. Phys.
17
,
1754
62
(
1976
).
7.
D. A. Dubin, Solvable Models in Algebraic Statistical Mechanics (Clarendon, Oxford, 1974).
This content is only available via PDF.
You do not currently have access to this content.