We consider the interaction of a finite number of nonrelativistic particles with a positive or zero mass quantum field. We show that in the weak coupling limit the quantum field gives rise to an effective interaction between the particles of a Yukawa or Coulomb type, as well as, in some cases, a mass renormalization. In a simple exactly soluble model we investigate the higher order radiation processes.
REFERENCES
1.
E. B.
Davies
, “Dynamics of a multilevel Wigner—Weisskopf atom
,” J. Math. Phys.
15
, 2036
–2041
(1974
).2.
E. B.
Davis
, “Markovian master equations
,” Commun. Math. Phys.
39
, 91
–110
(1974
).3.
E. B. Davis, “A model of atomic radiation,” Ann. Inst. H. Poincare (to appear).
4.
P.
Blanchard
, “Discussion mathéimatique du modéle de Pauli et Fierz relatif á la catastrophe infrarouge
,” Commun. Math. Phys.
15
, 156
–172
(1969
).5.
J.
Fröhlich
, “On the infrared problem in a model of scalar electrons and massless scalar bosons
,” Ann. Inst. H. Poincaré A
19
, 1
–103
(1973
).6.
M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York, 1975), Vol. 2.
7.
E. B.
Davies
, “Asymptotic analysis of some abstract evolution equations
,” J. Functional Anal.
25
, 81
–101
(1977
).8.
T. G.
Kurtz
, “A limit theorem for perturbed operator semigroups with applications to random evolutions
,” J. Funct. Anal.
12
, 55
–67
(1973
).9.
C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).
10.
J. M. Ziman, Elements of Advanced Quantum Theory (Cambridge U.P., Cambridge, 1969).
11.
E. B. Davies, “Electron‐atom interactions in the low density limit” (in preparation).
12.
E.
Nelson
, “Interaction of nonrelativistic particles with a quantized scalar field
,” J. Math. Phys.
5
, 1190
–7
(1964
).13.
E. B.
Davies
, “The harmonic oscillator in a heat bath
,” Commun. Math. Phys.
33
, 171
–86
(1973
).14.
R.
Davidson
and J. J.
Kozak
, “Relaxation to quantum statistical equilibrium of the Wigner—Weisskopf atom in a one‐dimensional radiation field. III. The quantum‐mechanical solution
.” J. Math. Phys.
12
, 903
–917
(1973
).15.
A. P.
Grecos
and I.
Prigogine
, “Kinetic and ergodic properties of quantum systems—the Friedrichs model
,” Physica
59
, 77
–96
(1972
).16.
A. Erdelyi (editor), Bateman manuscript project. Tables of Integral Transforms (McGraw‐Hill, New York, 1954), Vol. 2.
17.
J. S.
Howland
, “Spectral concentrations and virtual poles II.
,” Trans. Amer. Math. Soc.
162
, 141
–56
(1971
).18.
J. S.
Howland
, “The Livsic matrix in perturbation theory
,” J. Math. Anal. Appl.
50
, 415
–37
(1975
).19.
B.
Simon
, “Resonances in n‐body quantum systems with dilatation analytic potentials and the foundations of timedependent perturbation theory
,” Ann. Math.
97
, 247
–74
(1973
).20.
E. B.
Davies
, “Resonances, spectral concentration and exponential decay
,” Lett. Math. Phys.
1
, 31
–5
(1975
).
This content is only available via PDF.
© 1979 American Institute of Physics.
1979
American Institute of Physics
You do not currently have access to this content.