The infinite medium inverse problem with an azimuthally dependent plane source leads to integral moments of the intensity over all space and angle. A new relationship has been derived between the moments and the coefficients of the expansion of powers of ν in terms of the gmk(ν) polynomials which arise in transport problems without azimuthal symmetry. This relationship has been used to obtain an improved method for determining the moments.

1.
S. Chandrasekhar, Radiative Transfer (Oxford U.P., London and New York, 1950;
Dover, New York, 1960).
2.
B. Davison, Neutron Transport Theory (Oxford U.P., London, 1957).
3.
S.
Pahor
,
Phys. Rev.
175
,
218
(
1968
).
4.
K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison‐Wesley, Reading, Mass., 1967), pp. 99ff.
5.
K. M.
Case
,
Phys. Fluids
16
,
1607
(
1973
).
6.
N. J.
McCormick
and
I.
Kuščer
,
J. Math. Phys.
15
,
926
(
1974
).
7.
C. E.
Siewert
,
M. N.
Özişik
, and
Y.
Yener
,
Nucl. Sci. Eng.
63
,
95
(
1977
).
8.
E.
Canfield
,
Nucl. Sci. Eng.
53
,
137
(
1974
).
9.
N. J.
McCormick
and
I.
Kuščer
,
J. Math. Phys.
7
,
2036
(
1966
).
10.
In this and subsequent equations substitute the value 1 for the symbol Πn = jk whenever k⩽j.
11.
I. Kuščer and N. J. McCormick, in Proceedings of the UCLA International Conference on Radiation and Remote Probing of the Atmosphere, edited by J. G. Kuriyan (Western Periodicals, North Hollywood, Calif., 1974), p. 196.
12.
E.
İnönü
,
J. Math. Phys.
11
,
568
(
1970
).
13.
J. R.
Mika
,
Nucl. Sci. Eng.
11
,
415
(
1961
).
14.
J. A. R. Veeder, MS Thesis (Dept. of Nucl. Eng., U. of Washington, Seattle, 1977).
This content is only available via PDF.
You do not currently have access to this content.