It is shown that the motion of certain types of helical space curves may be related to the sine–Gordon equation and to the Hirota equation (and consequently to the nonlinear Schrödinger equation and to the modified Korteweg–de Vries equation). The intrinsic equations that govern the motion of space curves are shown to provide the various linear equations that have been introduced to solve these evolution equations by inverse scattering methods.
REFERENCES
1.
N. J. Zabusky, in Nonlinear Partial Differential Equations, edited by W. Ames (Academic, New York, 1967), pp. 223–58.
2.
C. S.
Gardner
, J. M.
Greene
, M. D.
Kruskal
, and R. M.
Miura
, Phys. Rev. Lett.
19
, 1095
(1967
).3.
R. M.
Miura
, C. S.
Gardner
, and M. D.
Kruskal
, J. Math. Phys.
9
, 1204
(1968
).4.
5.
[
V. E.
Zakharov
and L. D.
Fadeev
, Funct. Anal. Appl.
5
, 280
(1971
)].6.
7.
M. J.
Ablowitz
, D. J.
Kaup
, A. C.
Newell
, and H.
Segur
, Phys. Rev. Lett.
31
, 125
(1973
).8.
M. J.
Ablowitz
, D. J.
Kaup
, A. C.
Newell
, and H.
Segur
, Stud. Appl. Math.
53
, 249
(1974
).9.
H. D.
Wahlquist
and F. B.
Estabrook
, Phys. Rev. Lett.
31
, 1386
(1973
);10.
11.
12.
R. Hirota, in Bäcklund Transformations, edited by R. Miura Vol. 515 of Lecture Notes in Mathematics, edited by A. Dold and B. Eckmann (Springer‐Verlag, New York, 1974), pp. 40–68.
13.
H. Rund, Ref. 12, pp. 199–226.
14.
15.
16.
17.
18.
19.
20.
21.
22.
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces (Dover, New York, 1960), Sec. 13–15.
23.
24.
25.
26.
27.
J. L. Goldberg and A. J. Schwartz, Systems of Ordinary Differential Equations (Harper and Row, New York, 1972), p. 123.
This content is only available via PDF.
© 1977 American Institute of Physics.
1977
American Institute of Physics
You do not currently have access to this content.