The purpose of this communication is to call attention to the conceptual economy provided by the objectofanholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space–time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames? The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four‐dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. Schiff attempted to explain the vanishing of the electromagnetic field tensor in the frame of an observer rotating about a charged spherical capacitor, in terms of an interaction with the distant stars. However, if one employs a Lorentzian rotation and the ensuing orthogonal anholonomic reference frames, an explanation is possible without gravitationally induced currents. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space–time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the objectofanholonomity.

1.
J.
van Bladel
,
Proc. IEEE
61
,
260
68
(
1973
).
2.
T.
Shiozawa
,
Proc. IEEE
61
,
1694
702
(
1973
).
3.
J. C.
Hafele
,
Am. J. Phys.
40
,
81
85
(
1972
).
4.
T. C.
Mo
,
J. Math. Phys.
11
,
2589
610
(
1970
).
5.
W. H.
Weihofen
,
Am. J. Phys.
43
,
39
46
(
1975
).
6.
H. A.
Atwater
,
Proc. IEEE
63
,
316
17
(
1975
).
7.
T.
Shiozawa
, remarks in reply to Ref. 6,
Proc. IEEE
63
,
317
18
(
1975
).
8.
J.
van Bladel
,
Proc. IEEE
64
,
301
18
(
1976
).
9.
J.
Killpatrick
,
IEEE Spectrum
4
,
44
55
(
1967
).
10.
R.
Newburgh
,
P.
Blacksmith
,
A. J.
Budreau
, and
J. C.
Sethares
,
Proc. IEEE
62
,
1621
28
(
1974
).
11.
L. I.
Schiff
,
Proc. Natl. Acad. Sci.
25
,
391
95
(
1939
).
12.
P.
Ehrenfest
,
Phys. Z.
10
,
918
(
1909
).
13.
M.
Planck
,
Phys. Z.
11
,
294
(
1910
).
14.
The author is grateful to an anonymous reviewer for his comments on this point.
15.
R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw‐Hill, New York, 1965), pp. 110–16, 118–20.
16.
W. Pauli, Theory of Relativity (Pergamon, New York, 1958), p. 151.
17.
C. Møller, The Theory of Relativity (Oxford U.P., New York, 1952), p. 247.
18.
Y. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1‐Stars and Relativity (University of Chicago Press, Chicago, 1971), pp. 9–16, 20.
19.
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Addison‐Wesley, Reading, Massachusetts, 1962), pp. 259–62, 296–98.
20.
F. A. E.
Pirani
,
Bull. Acad. Pol. Sci.
5
,
143
46
(
1957
).
21.
W. M.
Irvine
,
Physica
30
,
1160
70
(
1964
).
22.
C. Misner, K. Thorne, and J. Wheeler, Gravitation (Preliminary version, duplicated Fall 1970), p. 124.
23.
J. A. Schouten, Ricci Calculus (Springer‐Verlag, Berlin, 1954), pp. 99–110, 117–21, 169–73.
24.
J. A. Schouten, Einfuhrung in die Neueren Methoden der Differential geometrie (Noordhoff, Groningen, 1935), Vol. 1, pp. 138–40.
25.
L. H.
Thomas
,
Nature
117
,
514
(
1926
).
26.
L. H.
Thomas
,
Phil. Mag.
7
,
1
(
1927
).
27.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1963).
28.
G.
Sagnac
,
C. R. Acad. Sci. (Paris)
157
,
708
,
1410
(
1913
);
G.
Sagnac
,
J. Phys. Radium
4
,
177
95
(
1914
).
29.
E. J.
Post
,
Rev. Mod. Phys.
39
,
475
93
(
1967
).
30.
E. J.
Post
,
J. Opt. Soc. Am.
62
,
234
39
(
1972
).
31.
C. V.
Heer
,
Phys. Rev.
134A
,
799
804
(
1964
).
32.
C. V.
Heer
,
J.
Little
, and
N.
Bupp
,
Ann. Inst. H. Poincaré, Ser. A
,
8
,
311
26
(
1968
).
33.
Ref. 19, p. 296.
34.
Ref. 23, p. 100.
35.
In this respect, compare the comments of DeSitter in:
W.
DeSitter
,
Proc. R. Acad. Amsterdam
19
,
527
32
(
1916
);
W.
DeSitter
,
19
,
1217
25
(
1917
).
This content is only available via PDF.
You do not currently have access to this content.