Stationary field equations in the presence of a charged perfect fluid with both electric and monopole currents in isometric motion are studied. It is shown that the eight‐parameter group of transformations which preserve the stationary electrovac equations can also be applied to dually charged sources. In the case of dually charged dust an equilibrium condition ρ= (σ*σ)1/2 implies a functional relationship between ReΓ and the complex potentials Φ and Φ*. Furthermore, it is proved that when ρ≠0 and σ≠0, the additional assumption of an arbitrary linear relationship between Γ and Φ leads uniquely to the Israel–Spanos class of solutions.

1.
W. B.
Bonnor
,
Proc. Phys. Soc. A
67
,
225
(
1954
).
2.
D.
Kramer
,
G.
Neugebauer
, and
H.
Stephani
,
Forschr. Physik
20
, Heft 1,
1
(
1972
).
3.
W.
Kinnersley
,
J. Math. Phys.
14
,
651
(
1973
).
For the historical development of these symmetries, see, e.g.,
H. A.
Buchdahl
,
Quart. J. Math., Oxford Ser.
5
,
116
(
1954
),
R. A.
Matzner
and
C. W.
Misner
,
Phys. Rev.
154
,
1229
(
1966
),
R.
Geroch
,
J. Math. Phys.
12
,
918
(
1971
),
and
S.
Kloster
,
M. M.
Som
, and
A.
Das
,
J. Math. Phys.
15
,
1096
(
1974
).
4.
N. D. Hari
Dass
,
Phys. Rev. Lett.
36
,
393
(
1976
).
5.
U. K.
De
and
A. K.
Raychaudhuri
,
Proc. Roy. Soc. Lond. A
303
,
47
(
1968
).
6.
A.
Das
,
Proc. Roy. Soc. Lond. A
267
,
1
(
1962
).
7.
S. D.
Majumdar
,
Phys. Rev.
72
,
390
(
1947
).
8.
A.
Papapetrou
,
Proc. Roy. Irish Acad. A
51
,
191
(
1947
).
9.
F. J.
Ernst
,
Phys. Rev.
168
,
1415
(
1968
).
10.
Z.
Perjes
,
Phys. Rev. Lett.
27
,
1668
(
1971
).
11.
W.
Israel
and
G. A.
Wilson
,
J. Math. Phys.
13
,
865
(
1962
).
12.
W.
Israel
and
J. T. J.
Spanos
,
Lett. Nuovo Cimento
7
,
245
(
1973
).
13.
Equations (2.1) reduce to (C.28) and (C.29) of KNS by letting σ = ρ and Fij = −Hij. Note that KNS use signature +2, which changes the signs of the last three terms of Qij. We define the dual of a tensor so that F*14 = detγijF23, as in KNS, while some authors use the opposite sign.
14.
Cf. KNS Eq. (C.11). They use ψ for A and χ for −B. Our Φ = 2Φ*KNS = −(4π)−1/2ΨIW.
15.
See the derivation of Eq. (17) in IW.
16.
Γ = εIW = −4Γ*KNS.
17.
These equations reduce to (C.42) of KNS. In their equations (b) and (c), the right sides should be 14F−1j4 and 14F−1T4.
18.
Table 7 of KNS. See also Kinnersley, Ref. 3.
19.
Some of these were applied to sources by
D.
Kramer
and
G.
Neugebauer
,
Ann. Physik
7
, Bd. 27,
129
(
1971
).
20.
This is a generalization of a transformation given by Buchdahl in Ref. 3.
21.
R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1966), Vol. II.
22.
Cf. sec 4 of IW.
This content is only available via PDF.
You do not currently have access to this content.