A generalized class of invariants, I (t), for the three‐dimensional, time‐dependent harmonic oscillator is presented in both classical and quantum mechanics. For convenience a simple notation for types of harmonic oscillator is introduced. Two interpretations, one in terms of angular momentum and the other employing a canonical transformation, are offered for I (t). An invariant symmetric tensor, Imn(t), is constructed and shown to reduce to Fradkin’s invariant tensor for time‐independent systems. The usual SU(3) (compact) or SU(2,1) (noncompact) is shown to be a noninvariance group for the time‐dependent oscillator with S{U(2) ⊗U(1) } as the invariance subgroup. Extensions to anisotropic systems and the singular quadratic perturbation problem are discussed.

1.
H. R.
Lewis
, Jr.
,
Phys. Rev. Lett.
18
,
510
,
636
(
1967
).
2.
H. R.
Lewis
, Jr.
,
J. Math. Phys.
9
,
1976
(
1968
).
3.
H. R.
Lewis
, Jr.
and
W. B.
Riesenfeld
,
J. Math. Phys.
10
,
1458
(
1969
).
4.
M.
Kruskal
,
J. Math. Phys.
3
,
806
(
1962
).
5.
E.
Pinney
,
Proc. Am. Math. Soc.
1
,
681
(
1950
).
6.
C. J.
Eliezer
and
A.
Gray
,
S.I.A.M.
30
,
463
(
1976
).
7.
D. M.
Fradkin
,
Am. J. Phys.
33
,
207
(
1965
).
8.
D. M.
Fradkin
,
Prog. Theor. Phys.
37
,
798
(
1967
).
9.
J. M.
Jauch
and
E. L.
Hill
,
Phys. Rev.
57
,
641
(
1940
).
10.
W. R.
Hamilton
,
Proc. R. Irish Acad.
3
,
344
(
1847
);
C. Runge, Vektoranalysis (Dutton, New York, 1919), Vol. 1;
W.
Lenz
,
Z. Phys.
24
,
197
(
1924
).
11.
The Runge‐Lenz vector for the Schrödinger‐Coulomb Hamiltonian, H = 12p2−Ze2/r,
, has magnitude R = a(1−ε) and lies along the line 0R from the center of force to the perihelion of the ellipse
, where
charge,
of the semimajor axis,
momentum quantum
, 1, 2, ⋯,
polar angle measured from 0R, and
of the ellipse. The constancy of R([H,R] = 0), may be viewed as an expression of the constancy of the orientation of the axes of the ellipse. A similar interpretation applies to Hmn. The commutation relations for H≡E<0,
,
,
, are an algebraic statement that the hydrogen atom possesses the dynamical symmetry O(4) = SO(3)⊗SO(3).
12.
P.
Camiz
et al.,
J. Math. Phys.
12
,
2040
(
1971
) and Refs. cited therein.
13.
D. C.
Khandekar
and
S. V.
Lawande
,
J. Math. Phys.
16
,
384
(
1975
).
14.
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (Wiley, New York, 1974), p. 58.
15.
The identities (46) and (47) differ from their classical counterparts (15) and (12) respectively. The additional terms which appear have coefficients either of ℏ or 2 and so the difference is due to quantum mechanical effects and not to any change in the structure of the tensor Imn.
16.
Non‐Compact Groups in Particle Physics, edited by Y. Chow (Benjamin, New York, 1966).
17.
N.
Mukunda
,
L.
O’Raifeartaigh
, and
E. C. G.
Sudarshan
,
Phys. Rev. Lett.
15
,
1041
(
1965
).
18.
E. C. G.
Sudarshan
,
N.
Mukunda
, and
L.
O’Raifeartaigh
,
Phys. Lett.
19
,
332
(
1965
).
19.
R. Gilmore, Lie Groups, lie Algebras and Some of Their Applications (Wiley, New York, 1974).
20.
Yu. N.
Demkov
,
Zh. Eksp. Teor. Fiz.
44
,
2007
(
1963
)
[
Yu. N.
Demkov
,
Sov. Phys. JETP
17
,
1349
(
1963
)].
21.
I.
Vendramin
,
Nuovo Cimento A
54
,
190
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.