Over twenty years ago A. Bohr discussed the quantum mechanical problem of the quadrupole vibrations in the liquid drop model of the nucleus. States of definite angular momentum L could not be obtained exactly except when L=0,3. In the present paper we indicate how we can determine states for arbitrary angular momentum L and definite number of quanta ν in terms of polynomials of the creation operators characterized by irreducible representation (IR) of the chain of groups U(5)⊃O(3). We furthermore characterize the states by a definite IR λ of O(5) by replacing the creation operators by traceless ones. These states are fully determined by an extra label μ that gives the number of triplets of traceless creation operators coupled to angular momentum zero. We show then how all the wavefunctions of the problem discussed by Bohr can be obtained in a recursive fashion and briefly discuss some of their applications.

1.
A.
Bohr
,
Kgl. Dan. Videnskab. Selsk. Mat. Fys. Medd.
26
,
14
(
1952
).
2.
A.
Bohr
and
B.
Mottelson
,
Kgl. Dan. Videnskab. Selsk. Mat. Fys. Medd.
27
,
16
(
1953
).
3.
A. Bohr, “Rotational States in Atomic Nuclei,” Thesis, Copenhagen (1954).
4.
A. S.
Davidov
,
Nucl. Phys.
24
,
682
(
1961
).
5.
V.
Bargmann
and
M.
Moshinsky
,
Nucl. Phys.
23
,
177
(
1961
).
6.
M. A. Lohe, “The Development of the Boson Calculus for the Orthogonal and Symplectic Groups,” Thesis, University of Adelaide (1974).
7.
N. Y. Vilenkin, Special Functions and Theory of Groups Representations (A.M.S. Transl., Providence, R.I., 1968).
8.
G.
Racah
,
Phys. Rev.
63
,
367
(
1943
).
9.
J. M. Eisenberg and W. Greiner, Nuclear Models (North‐Holland, Amsterdam, 1970), Chap. 2, pp. 35–36.
10.
Ref. 9, Appendix A, p. 431.
11.
Ref. 9, Chap. 5, pp. 103, 96, 106.
12.
Ref. 9, Chap. 6, pp. 130, 131, 149.
13.
J. D.
Louck
and
H. W.
Galbraith
,
Rev. Mod. Phys.
44
,
540
(
1972
).
14.
M.
Moshinsky
,
T. H.
Seligman
, and
B.
Wolf
,
J. Math. Phys.
13
,
901
(
1972
).
15.
F.
Calogero
,
J. Math. Phys.
12
,
2191
(
1969
).
16.
M. Moshinsky, Group Theory and the Many Body Problem (Gordon and Breach, New York, 1967).
17.
M.
Moshinsky
and
V.
Syamala Devi
,
J. Math. Phys.
10
,
455
(
1969
).
18.
R. T.
Sharp
and
C. S.
Lam
,
J. Math. Phys.
10
,
2033
(
1969
).
19.
M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
20.
L. von Bernus et al. “A Collective Model for Transitional Nuclei,” in Heavy Ion, High Spin States and Nuclear Structure (International Atomic Energy Agency, Vienna, 1975).
21.
A.
Arima
and
F.
Iachello
,
Phys. Lett. B
57
,
309
(
1974
);
A.
Arima
and
F.
Iachello
,
Phys. Lett. B
57
,
39
(
1975
).
22.
D. R.
Bès
,
Nucl. Phys.
10
,
373
(
1959
).
23.
A. P.
Budnik
,
N. S.
Rabotnov
, and
A. A.
Seregin
,
Yad. Fiz.
477
(
1970
)
[
A. P.
Budnik
,
N. S.
Rabotnov
, and
A. A.
Seregin
,
Sov. J. Nucl. Phys.
12
,
261
(
1971
)].
This content is only available via PDF.
You do not currently have access to this content.