A direct method for the determination of the Iwasawa decomposition of any noncompact semisimple real Lie algebra is described in detail. It is based on the canonical form of the Lie algebra. The physically important Lie algebras so (3,1), so (4,1), so (3,2), and so (4,2) are treated as illustrative examples.
REFERENCES
1.
2.
G. W. Mackey, Induced Representations of Groups and Quantum Mechanics (Benjamin, New York, 1968).
3.
G. W. Mackey, “Group Representations,” Lecture Notes, Oxford University, 1967 (unpublished).
4.
5.
E. M. Stein, in High Energy Physics and Elementary Particles, edited by A. Salam (International Atomic Energy Agency, Vienna, 1965), p. 563.
6.
R. Hermann, Lie Groups for Physicists (Benjamin, New York, 1966).
7.
A.
Kihlberg
, V. F.
Müller
, and F.
Halbwachs
, Commun. Math. Phys.
3
, 194
(1966
).8.
9.
10.
11.
12.
13.
14.
15.
16.
J. M. Ekins and J. F. Cornwell, Rep. Math. Phys. (to be published).
17.
J. F. Cornwell and J. M. Ekins, J. Math. Phys. (to be published).
18.
J.
Patera
, P.
Winternitz
, and H.
Zassenhaus
, J. Math. Phys.
15
, 1378
(1974
).19.
J.
Patera
, P.
Winternitz
, and H.
Zassenhaus
, J. Math. Phys.
15
, 1932
(1974
).20.
J. F. Cornwell, Int. J. Theor. Phys. (to be published).
21.
N. Jacobson, Lie Algebras (Interscience, New York, 1962), Chap. 4.
22.
This content is only available via PDF.
© 1975 American Institute of Physics.
1975
American Institute of Physics
You do not currently have access to this content.