The Liouville−von Neumann equation and a useful decomposition of the resolvent of the generator of the time evolution operators are obtained in the formulation of quantum statistics by means of the pair of Banach spaces (τc, B), where τc is the space of the ’’trace−class’’ operators and B is the space of all bounded operators, defined on a Hilbert space.

1.
I.
Prigogine
,
C.
George
,
F.
Henin
,
Physica
45
,
418
(
1969
).
2.
L.
Lanz
,
L. A.
Lugiato
,
G.
Ramella
,
Physica
54
,
94
(
1971
).
3.
C.
George
,
I.
Prigogine
,
L.
Rosenfeld
,
Det. Kong. Dansk Vidensk. Sels.
38
,
12
(
1972
).
4.
G. Ludwig, Makroskopische Systeme und Quantenmechanik, Notes in Mathematical Physics, Universität Marburg NMP 5, April 1972.
5.
L. Lanz, L. A. Lugiato, G. Ramella, A. Sabbadini, “The embedding of unstable non‐relativistic particles into Galilean Quantum Field Theories,” Int. J. Theor. Phys. (to be published).
6.
L.
Lanz
and
L. A.
Lugiato
,
Physica
44
,
532
(
1969
).
7.
A. P.
Grecos
,
Physica
51
,
50
(
1971
).
8.
A. P.
Grecos
and
I.
Prigogine
,
Proc. Natl. Acad. Sci. USA
69
,
6
,
1629
(
1972
).
9.
F.
Mayné
and
I.
Prigogine
,
Physica
63
,
1
(
1973
).
10.
J. W.
Middleton
and
W. C.
Scieve
,
Physica
63
,
139
(
1973
).
11.
G. Ludwig, Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens (Springer‐Verlag, Berlin, 1970), Vol. 4.
12.
I. M. Gel’fand and N. Y. Vilenkin, Les distributions, applications de l’analyse harmonique (Dunod, Paris, 1967), Vol. 4.
13.
E. Hille and R. S. Phillips, Functional analysis and semigroups (American Mathematical Society, Providence, R.I., 1957).
14.
We make use of the following statement: let T be a closable and invertible operator defined in a Banach space χ. (T̄)−1 exists iff unεD(T),un→ν,Tun→0⇛ν = 0. In the proof of the statement δ, we have used also the fact that Ж−z¯ = Ж̄−z.
15.
G.
Lumer
and
R. S.
Phillips
,
Pacific J. Math.
11
,
679
(
1961
).
16.
One must pay attention not to mistake M̄*(z), that is the closure of M(z) as operator defined in σc, for M(z) that is the closure of M(z) as operator defined in τc.
17.
R. Schatten, Norm ideals of completely continuous operators (Springer Verlag, Berlin, 1960).
This content is only available via PDF.
You do not currently have access to this content.