The Liouville−von Neumann equation and a useful decomposition of the resolvent of the generator of the time evolution operators are obtained in the formulation of quantum statistics by means of the pair of Banach spaces (τc, B), where τc is the space of the ’’trace−class’’ operators and B is the space of all bounded operators, defined on a Hilbert space.
REFERENCES
1.
2.
3.
4.
G. Ludwig, Makroskopische Systeme und Quantenmechanik, Notes in Mathematical Physics, Universität Marburg NMP 5, April 1972.
5.
L. Lanz, L. A. Lugiato, G. Ramella, A. Sabbadini, “The embedding of unstable non‐relativistic particles into Galilean Quantum Field Theories,” Int. J. Theor. Phys. (to be published).
6.
7.
8.
A. P.
Grecos
and I.
Prigogine
, Proc. Natl. Acad. Sci. USA
69
, 6
, 1629
(1972
).9.
10.
11.
G. Ludwig, Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens (Springer‐Verlag, Berlin, 1970), Vol. 4.
12.
I. M. Gel’fand and N. Y. Vilenkin, Les distributions, applications de l’analyse harmonique (Dunod, Paris, 1967), Vol. 4.
13.
E. Hille and R. S. Phillips, Functional analysis and semigroups (American Mathematical Society, Providence, R.I., 1957).
14.
We make use of the following statement: let T be a closable and invertible operator defined in a Banach space χ. exists iff In the proof of the statement δ, we have used also the fact that
15.
16.
One must pay attention not to mistake that is the closure of as operator defined in for that is the closure of as operator defined in
17.
R. Schatten, Norm ideals of completely continuous operators (Springer Verlag, Berlin, 1960).
This content is only available via PDF.
© 1975 American Institute of Physics.
1975
American Institute of Physics
You do not currently have access to this content.