The asymptotic behavior for t→±∞ of S(t)=exp(−i H t)Sexp(+i H t) and its time average S̄ (t)=t−10tdu S(u) is discussed. Here is S an element of the Banach space B1, constituted by the trace class of operators on the (separable or nonseparable) Hilbert space H, and H is the Hamiltonian, i.e., a bounded or unbounded self‐adjoint operator on H. Necessary and sufficient conditions are given for the existence of the limits S̄(± ∞) and S(± ∞) with respect to the weak topology on B1, for the latter under the assumption that the continuous spectrum of H is absolutely continuous. In addition it is shown that if, for a normal state (density operator) ρ, ρ̄(t) has a weak limit, then the limit is again a normal state. This provides further insight in the nature of Emch's ``first ergodic paradox'' [G. G. Emch, J. Math. Phys. 7, 1413 (1966)].

1.
An extensive discussion of minimal norm ideals of completely continuous operators can be found in: R. Schatten, Norm Ideals of Completely Continuous Operators (Springer‐Verlag Berlin 1960), see also Refs. 4 and 5.
2.
G.
Emch
,
J. Math. Phys.
7
,
1413
(
1966
).
3.
J. E.
Moyal
,
J. Math. Phys.
10
,
506
(
1968
).
4.
I. C. Gohberg and M. G. Krein Introduction to the Theory of Linear Non Self‐Adjoint Operators (American Mathematical Society, Providence, R.I., 1969).
5.
I. C. Gohberg and M. G. Krein Theory and Applications of Volterra Operators in Hilbert Space (American Mathematical Society, Providence, R.I., 1970).
6.
E. Prugovečki and A. Tip, “Semi‐groups of rank‐preserving transformers on minimal norm ideals in B(H)” (to be published).
7.
E. Hille and R. S. Phillips, Functional Analysis and Semigroups (American Mathematical Society, Providence, R.I., 1957).
8.
G.
Emch
,
Lect. Theor. Phys.
8
,
65
(
1966
).
9.
E.
Prugovečki
,
J. Math. Phys.
13
,
969
(
1972
).
10.
C. A.
Akemann
,
Trans. Am. Math. Soc.
126
,
286
(
1967
), Corollary III 3.
11.
J. Dixmier, Les algébres d’opérateurs dans l’espace Hilbertien (algébras de von Neumann) (Ganthier‐Villars, Paris, 1969), 2nd ed., p. 42, Corollary 1.
12.
W. O.
Amrein
,
Ph. A.
Martin
, and
B.
Misra
,
Helv. Phys. Acta
43
,
313
(
1970
).
13.
R. B.
Lavine
,
J. Funct. Anal.
5
,
368
(
1970
).
14.
E.
Prugovečki
,
Nuovo Cimento B
4
,
105
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.