We propose a class of analytic short‐ranged nonlocal potentials, and we obtain dispersion relations for the forward scattering amplitude. We use the Fredholm method for the Lippman‐Schwinger equation for the scattering solution, and contour rotation in the analytic continuation of the forward scattering amplitude.

1.
M.
Gourdin
and
A.
Martin
,
Nuovo Cimento
6
,
757
(
1957
).
2.
M.
Gourdin
and
A.
Martin
,
Nuovo Cimento
8
,
699
(
1958
).
3.
K.
Chadan
,
Nuovo Cimento
10
,
892
(
1958
).
4.
A. N.
Mitra
,
Phys. Rev.
123
,
1892
(
1961
).
5.
A. N.
Mitra
,
Bull. Am. Phys. Soc.
7
,
609
(
1962
).
6.
J. T.
Cushing
,
Nuovo Cimento
28
,
818
(
1963
).
7.
G. C.
Ghirardi
and
A.
Rimini
,
J. Math. Phys.
5
,
722
(
1964
).
8.
F.
Catara
and
M.
Di Toro
,
J. Math. Phys.
6
,
1720
(
1965
).
9.
D.
Gutkowski
and
A.
Scalia
,
J. Math. Phys.
9
,
588
(
1968
).
10.
D.
Gutkowski
and
A.
Scalia
,
J. Math. Phys.
10
,
2306
(
1969
).
11.
R.
Mills
and
J.
Reading
,
J. Math. Phys.
10
,
321
(
1969
).
12.
M.
Coz
,
L. G.
Arnold
, and
A. D.
Mackellar
,
Ann. Phys. (N.Y.)
59
,
219
(
1970
).
13.
A.
Martin
,
Nuovo Cimento
7
,
607
(
1958
).
14.
M.
Bertero
,
G.
Talenti
, and
G. A.
Viano
,
Nuovo Cimento
46
,
337
(
1966
).
15.
M.
Bertero
,
G.
Talenti
, and
G. A.
Viano
,
Commun. Math. Phys.
6
,
128
(
1967
).
16.
M.
Bertero
,
G.
Talenti
, and
G. A.
Viano
,
Nucl. Phys. A
113
,
625
(
1968
).
17.
M.
Bertero
,
G.
Talenti
, and
G. A.
Viano
,
Nucl. Phys. A
115
,
395
(
1968
).
18.
M.
Bertero
,
G.
Talenti
, and
G. A.
Viano
,
Nuovo Cimento
62
,
27
(
1969
).
19.
A.
Montes
,
Nuovo Cimento
62
,
144
(
1969
).
20.
Y.
Yamaguchi
,
Phys. Rev.
95
,
1628
(
1954
).
21.
Y.
Yamaguchi
and
Y.
Yamaguchi
,
Phys. Rev.
95
,
1635
(
1954
).
22.
H. A.
Bethe
,
Phys. Rev.
103
,
1353
(
1956
).
23.
A. Messiah, Quantum Mechanics (North‐Holland, Amsterdam, 1961).
24.
A. N.
Mitra
,
Nucl. Phys.
32
,
529
(
1962
).
25.
F.
Perey
and
B.
Buck
,
Nucl. Phys.
32
,
353
(
1962
).
26.
C.
Lovelace
,
Phys. Rev. B
135
,
1225
(
1964
).
27.
G. E. Brown, Unified Theory of Nuclear Models (North‐Holland, Amsterdam, 1964).
28.
H.
Feshbach
and
A. K.
Kerman
,
Comments Nucl. Part. Phys.
2
,
22
(
1968
). Here we call any potential nonlocal if it is not local.
29.
M.
Coz
,
A. D.
Mackellar
, and
L. G.
Arnold
,
Ann. Phys. (N.Y.)
58
,
504
(
1970
).
30.
T. D.
Forest
,
Nucl. Phys. A
163
,
237
(
1971
).
31.
J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952), p. 139.
32.
We have not proved that a negative energy bound state or bound states give rise to a pole in the forward scattering amplitude.
33.
See Ref. 18, Theorem 3.2.
34.
F. Smithies, Integral Equations (Cambridge U.P., Cambridge, 1958).
35.
W. V. Lovitt, Linear Integral Equations (Dover, New York, 1950). The discussions in this reference are concerned with continuous functions on a bounded interval. However, the arguments and the results remain valid in all cases discussed below where Ref. 35 is quoted.
36.
N. N.
Khuri
,
Phys. Rev.
107
,
1148
(
1957
).
37.
See Appendix A.
38.
E. C. Titchmarsh, The Theory of Functions (Oxford U.P., London, 1950).
39.
The result, proved in Ref. 38 for functions of one complex variable, may be extended to the case of functions of two complex variables.
40.
D. V. Widder, The Laplace Transform (Princeton U.P., Princeton, N.J., 1946), Corollary la, p. 182.
41.
We shall obtain in Appendix B a result on functions of two complex variables which enables us to give a set of sufficient conditions for Ṽ(x,x′,cos y) to satisfy condition (C).
42.
See Appendix C.
43.
H. B. Dwight, Tables of Integrals and Other Mathematical Data (MacMillan, New York, 1947).
44.
See Ref. 39.
This content is only available via PDF.
You do not currently have access to this content.