The representation theory of the rotation group O(3) is developed in a new basis, consisting of eigenfunctions of the operator E = −4(L12 + rL22), where 0 < r < 1 and Li are generators. This basis |Jλ〉 is shown to be a unique nonequivalent alternative to the canonical basis (eigenfunctions of L3). The functions |Jλ〉 are constructed as linear combinations of canonical basis functions and are shown to fall into four symmetry classes, distinguished by their behavior under reflections of the inidividual space axes. Algebraic equations for the eigenvalues λ of E are derived. When realized in terms of functions on an O(3) sphere, the basis |Jλ〉 consists of products of two Lamé polynomials, obtained by separating variables in the corresponding Laplace equation in elliptic coordinates. When realized in a space of functions of one complex variable, |Jλ〉 are Heun polynomials. Applications of the new basis in elementary particle, nuclear, and molecular physics are pointed out, due in particular to the symmetric form of |Jλ〉 as functions on a sphere and to the fact that they are the wavefunctions of an asymmetrical top.

1.
See, for example, D. M. Brink and G. R. Satchler, Angular Momentum (Clarendon, Oxford, 1968);
M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957);
A. P. Yutsis and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mintis, Vilnius, 1965) (in Russian);
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).
2.
P.
Winternitz
and
I.
Friš
,
Yad. Fiz.
1
,
899
(
1965
)
[
P.
Winternitz
and
I.
Friš
,
Sov. J. Nucl. Phys.
1
,
636
(
1965
)].
3.
P.
Winternitz
,
I.
Lukač
, and
Ya. A.
Smorodinsky
,
Yad. Fiz.
7
,
192
(
1968
)
[
P.
Winternitz
,
I.
Lukač
, and
Ya. A.
Smorodinsky
,
Sov. J. Nucl. Phys.
7
,
139
(
1968
)].
4.
Ya. A.
Smorodinsky
and
I. I.
Tugov
,
Zh. Eksp. Teor. Fiz.
50
,
653
(
1966
)
[
Ya. A.
Smorodinsky
and
I. I.
Tugov
,
Sov. Phys.‐JETP
23
,
434
(
1966
)].
5.
N. J. Vilenkin, Special Functions and the Theory of Group Representations (Am. Math. Soc., Providence, R.I., 1968).
6.
I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5 (Academic, New York, 1966).
7.
W. Miller, Jr., Lie Theory and Special Functions (Academic, New York, 1968).
8.
E. P. Wigner, The Application of Group Theory to the Special Functions of Mathematical Physics (Princeton Lecture Notes, 1955);.
9.
J. D. Talman, Special Functions. A Group Theoretic Approach (Benjamin, New York, 1968).
10.
H. Hochstadt, The Functions of Mathematical Physics (Wiley, New York, 1971).
11.
F. M. Arscott, Periodic Differential Equations (Macmillan, New York, 1964).
12.
A. Erdelyi et al., Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vol. III.
13.
M. N.
Olevsky
,
Mat. Sb.
27
,
69
,
379
, (
1950
).
14.
A. S. Davydov, Quantum Mechanics (Neo Press, Ann Arbor, Michigan, 1966);
L. D. Landau and E. M. Lifschitz, Quantum Mechanics (Pergamon, London, 1958).
15.
H. A.
Kramers
and
G. P.
Ittman
,
Z. Phys.
53
,
553
(
1929
);
H. A.
Kramers
and
G. P.
Ittman
,
Z. Phys.
58
,
217
(
1929
);
H. A.
Kramers
and
G. P.
Ittman
,
Z. Phys.
60
,
663
(
1930
).
16.
R. D.
Spence
,
Am. J. Phys.
27
,
329
(
1959
).
17.
I.
Lukač
and
Ya. A.
Smorodinsky
,
Zh. Eksp. Teor. Fiz.
57
,
1342
(
1969
)
[
I.
Lukač
and
Ya. A.
Smorodinsky
,
Sov. Phys.‐JETP
30
,
728
(
1970
)].
18.
I.
Lukač
,
Teor. Mat. Fyz.
14
,
366
(
1973
)
[
I.
Lukač
,
Theor. Math. Phys.
14
(
1973
)].
19.
I.
Lukač
and
Ya. A.
Smorodinsky
,
Teor. Mat. Fyz.
14
,
170
(
1973
)
[
I.
Lukač
and
Ya. A.
Smorodinsky
,
Theor. Math. Phys.
14
, (
1973
)].
20.
A. S.
Davydov
,
Usp. Fiz. Nauk
87
,
599
(
1965
)
[
A. S.
Davydov
,
Sov. Phys.‐Usp.
8
,
873
(
1966
)].
21.
V.
de Alfaro
,
M.
Fiamberti
,
E.
Predazzi
, and
C.
Rosseti
,
Nuovo Cimento
29
,
1367
(
1963
).
22.
A.
Lemieux
and
A. K.
Bose
,
Ann. Inst. Henri Poincaré A
10
,
259
(
1969
).
23.
C. A.
Coulson
and
A.
Joseph
,
Int. J. Quantum Chem.
1
,
337
(
1967
).
24.
R. V.
Pound
,
Phys. Rev.
79
,
685
(
1950
).
25.
P.
Winternitz
,
I.
Friš
,
Ya. A.
Smorodinsky
, and
M.
Uhlíř
,
Yad. Fiz.
4
,
625
(
1966
)
[
P.
Winternitz
,
I.
Friš
,
Ya. A.
Smorodinsky
, and
M.
Uhlíř
,
Sov. J. Nucl. Phys.
4
,
444
(
1967
)].
26.
A. A.
Makarov
,
Y. A.
Smorodinsky
,
Kh. V.
Valiev
, and
P.
Winternitz
,
Nuovo Cimento A
52
,
1061
(
1967
).
27.
M.
Jacob
and
G. C.
Wick
,
Ann. Phys. (N.Y.)
7
,
404
(
1959
).
28.
P. D. B. Collins and E. J. Squires, Regge Poles in Particle Physics (Springer, Berlin, 1968).
29.
P. Winternitz, in Lectures in Theoretical Physics, edited by A. O. Barut and W. E. Brittin (Colorado Associated University Press, Boulder, 1971), Vol. 13.
30.
N. W.
Macfadyen
and
P.
Winternitz
,
J. Math. Phys.
12
,
281
(
1971
);
N. W.
Macfadyen
and
P.
Winternitz
,
Phys. Rev. D
3
,
1874
(
1971
).
31.
C.
Shukre
and
P.
Winternitz
,
Phys. Rev. D
6
,
3592
(
1972
);
C.
Shukre
and
P.
Winternitz
,
Phys. Rev. D
6
,
3607
(
1972
).
32.
L. F.
Landovitz
and
B.
Margolis
,
Ann. Phys. (N.Y.)
7
,
52
(
1959
).
33.
F. R. Gantmakher, The Theory of Matrices (Chelsea, New York, 1959).
34.
A. Erdelyi et al., Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vol. II.
35.
F. M. Arscott and I. M. Khabaza, Tables of Lamé Polynomials (Pergamon, Oxford, 1962).
This content is only available via PDF.
You do not currently have access to this content.