Correlation inequalities Az>≥0, AzσBz>≥<σAz><σBz>, ∂<σAz>/JBz≥0, and ∂<σAz>/∂JBx≤0 are proved for the generalized X‐Y model with the Hamiltonian of the form H=−Σ(JAzσAz+JAxσAx), where σAzjεAσjz, σAxjεAσjx, JAz≥0,JAx≥0, A denotes an arbitrary subset of the N lattice points, and σjx, σjz are the Pauli matrices. This yields a simple extension of the Griffiths‐Kelly‐Sherman inequalities to the above quantal system. Applications to phase transitions are also discussed briefly.

1.
G.
Gallavotti
,
Stud. Appl. Math.
50
,
89
(
1971
).
2.
M.
Suzuki
and
M. E.
Fisher
,
J. Math. Phys.
12
,
235
(
1971
).
3.
R. B.
Griffiths
,
J. Math. Phys.
8
,
478
(
1967
);
R. B.
Griffiths
,
J. Math. Phys.
8
,
484
(
1967
).
D. G.
Kelly
and
S.
Sherman
,
J. Math. Phys.
9
,
466
(
1968
).
See also R. B. Griffiths, in Phase Transitions and Critical Points, edited by C. Domb and M. S. Green (Academic, London, 1972).
4.
J. Ginibre, Lectures at the Cargese Summer School, 1969.
5.
F. J.
Dyson
,
Commun. Math. Phys.
12
,
91
(
1969
);
F. J.
Dyson
,
Commun. Math. Phys.
12
,
212
(
1969
).
See also
D.
Ruelle
,
Commun. Math. Phys.
9
,
267
(
1968
).
6.
H.
Falk
and
L. W.
Bruch
,
Phys. Rev.
180
,
442
(
1969
).
See also
M.
Suzuki
,
Prog. Theor. Phys.
46
,
1054
(
1971
).
7.
J. M.
Luttinger
,
Prog. Theor. Phys. Suppl.
37
,
35
(
1966
).
B. D.
Josephson
,
Proc. Phys. Soc. Lond.
92
,
269
(
1967
).
A. B.
Harris
,
J. Math. Phys.
8
,
1044
(
1967
).
8.
D. D.
Betts
,
C. J.
Elliott
, and
M. H.
Lee
,
Phys. Lett. A
29
,
150
(
1969
);
D. D.
Betts
,
C. J.
Elliott
, and
M. H.
Lee
,
Can. J. Phys.
48
,
1566
(
1970
).
9.
T.
Matsubara
and
H.
Matsuda
,
Prog. Theor. Phys.
16
,
569
(
1956
).
R.
Whitlock
and
P.
Zilsel
,
Phys. Rev.
131
,
2409
(
1963
).
R. H.
Parmenter
,
Phys. Rev.
170
,
194
(
1968
).
10.
M. Suzuki, to be submitted to Prog. Theor. Phys.
This content is only available via PDF.
You do not currently have access to this content.