Exact N‐envelope‐soliton solutions have been obtained for the following nonlinear wave equation, i∂ψ/∂t + i3α|ψ|2 ∂ψ/∂x + β∂2ψ/∂x2 + iγ∂3ψ/∂x3 + δ|ψ|2ψ = 0, where α, β, γ and δ are real positive constants with the relation αβ = γδ. In one limit of α = γ = 0, the equation reduces to the nonlinear Schrödinger equation which describes a plane self‐focusing and one‐dimensional self‐modulation of waves in nonlinear dispersive media. In another limit, β = δ = 0, the equation for real Ψ, reduces to the modified Korteweg‐de Vries equation. Hence, the solutions reveal the close relation between classical solitons and envelope‐solitons.

1.
Ryogo
Hirota
,
Phys. Rev. Lett.
27
,
1192
(
1971
).
2.
Ryogo
Hirota
,
J. Phys. Soc. Jap.
33
,
1456
(
1972
).
3.
Ryogo
Hirota
,
J. Phys. Soc. Jap.
33
,
1459
(
1972
).
4.
N. J.
Zabusky
and
M. D.
Kruskal
,
Phys. Rev. Lett.
15
,
240
(
1965
).
5.
V. E.
Zakharov
,
Zh. Eksp. Teor. Fiz.
60
,
993
(
1971
)
[
V. E.
Zakharov
,
Sov. Phys.‐JETP
33
,
538
(
1971
)].
6.
Miki
Wadati
and
Morikazu
Toda
,
J. Phys. Soc. Jap.
32
,
1403
(
1972
).
7.
R. M.
Miura
,
J. Math. Phys.
9
,
1202
(
1968
).
8.
A. C.
Scott
,
Am. J. Phys.
37
,
52
(
1969
).
9.
G. L.
Lamb
, Jr.
,
Rev. Mod. Phys.
43
,
99
(
1971
).
10.
V. E.
Zakharov
and
A. B.
Shabat
,
Zh. Eksp. Teor. Fiz.
61
,
118
(
1971
)
[
V. E.
Zakharov
and
A. B.
Shabat
,
Sov. Phys.‐JETP
34
,
62
(
1972
)].
11.
Miki
Wadati
,
J. Phys. Soc. Jap.
32
,
1681
(
1972
).
12.
F.
Ursell
,
Proc. Camb. Philos. Soc.
49
,
685
(
1953
).
13.
N. J. Zabusky, A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction, Nonlinear Partial Differential Equations (Academic, New York, 1967).
14.
Ryogo
Hirota
and
Kimio
Suzuki
,
J. Phys. Soc. Jap.
28
,
1366
(
1970
).
15.
M.
Toda
,
J. Phys. Soc. Jap.
23
,
501
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.