A comparison is made of two transformation theories which can be used in classical mechanics: the averaging method as generalized by Kruskal and the superoperator transformation theory used in statistical mechanics by Prigogine et al. For the class of systems considered, a striking connection is found which, on the one hand, illustrates some of the general features of the superoperator method and, on the other, provides an interesting method for calculating invariants of nearly periodic systems. This latter method is shown to be equivalent to, but more systematic than, that developed by McNamara and Whiteman.

1.
I.
Prigogine
et al., (a)
Proc. Natl. Acad. Sci. USA
65
,
789
(
1970
),
(b)
I.
Prigogine
et al.,
Proc. Natl. Acad. Sci. USA
66
,
709
(
1970
).
2.
I.
Prigogine
et al.,
Physica (Utr.)
45
,
418
(
1969
).
3.
P.
Mandel
,
Physica (Utr.)
50
,
77
(
1970
).
4.
J. W.
Turner
,
Physica (Utr.)
51
,
351
(
1971
).
5.
J.
Rae
and
R.
Davidson
,
J. Stat. Phys.
3
,
135
(
1971
).
6.
I.
Prigogine
,
Cl.
George
, and
J.
Rae
,
Physica
56
,
25
(
1971
).
7.
M.
Kruskal
,
J. Math. Phys.
3
,
806
(
1962
).
8.
B.
McNamara
, and
K. J.
Whiteman
,
J. Math. Phys.
8
,
2029
(
1967
).
9.
I. Prigogine, Topics in Non‐Linear Physics, Proceedings of International School of Non‐Linear Math. and Phys. Munich 1966 (Springer, New York, 1968).
10.
P.
Mandel
,
Physica (Utr.)
48
,
397
(
1970
).
11.
Cl.
George
,
Bull. Acad. Roy. Belg. Cl. Sci.
53
,
623
(
1967
).
12.
V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).
13.
J.
Moser
,
Mem. Amer. Math. Soc.
81
,
1
(
1968
).
14.
R.
Balescu
et al.,
Bull. Acad. Roy. Belg. Cl. Sci.
55
,
1055
(
1969
).
15.
A. P.
Grecos
,
Physica (Utr.)
57
,
50
(
1971
).
16.
T. P.
Coffey
,
J. Math. Phys.
10
,
426
(
1969
).
17.
M.
Kummer
,
J. Math. Phys.
12
,
4
(
1971
).
18.
T. P.
Coffey
and
G. W.
Ford
,
J. Math. Phys.
10
,
998
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.