A method to solve nonlinear dissipative wave equations using ideas of Luke, Krylov, and Bogolyubov is presented. The method is compared to Whitham's theory. Dispersion relations for nonlinear dissipative waves, including amplitude dispersion, are discussed. Furthermore, stability problems of such waves are investigated.
REFERENCES
1.
H. Lashinsky, Symposium on Dynamics of Fluids and Plasmas, University of Maryland, October 1965 (Academic, New York, 1966).
2.
H. Lashinsky, “Mathematical Models for Nonlinear Mode Interactions in Bounded Plasmas,” in Nonlinear effects in Plasmas, edited by M. Feix and Q. Kalman (Gordon and Breach, New York, 1969).
3.
K. Krylov and B. Bogolyubov, Introduction to Nonlinear Mechanics (Princeton U.P., Princeton, N.J., 1947);
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
B. M. Jaworsky, A. A. Detlaf, and F. Cap, Physik Griffbereil (Akademie‐Verlag. Berlin, 1971), p. 96.
15.
E.g., F. Cap, Einführung in die Plasmaphysik, Vol. 2 Wellen und Instabilitäten (Verlag Vieweg, Braunschweig, 1972).
16.
17.
18.
N. Minorsky, Introduction to Nonlinear Mechanics (Edwards, Ann Arbor, Michigan, 1947).
19.
20.
F. Cap, Einführung in die Plasmaphysik, Vol. 3 Magnetohydrodynamik (Verlag Vieweg, Braunschweig, 1972).
This content is only available via PDF.
© 1972 The American Institute of Physics.
1972
The American Institute of Physics
You do not currently have access to this content.