Variational functionals are presented which provide an estimate of ratios of linear and bilinear functionals of the solutions of the direct and adjoint equations (inhomogeneous and homogeneous) governing linear systems. These variational functionals are used as the basis for a generalized perturbation theory for estimating the effects of changes in system parameters upon these ratios of linear and bilinear functionals. The relation of the present theory to the variational theory of Pomraning and to the generalized perturbation theory of Usachev and Gandini is discussed. Potential applications of the theory to nuclear reactor physics are outlined.

1.
We shall speak of an “equation” throughout. However, the formalism is appropriate for matrix operations as well and, hence, is applicable to systems of equations.
2.
P. M. Morse and H. Feshback, Methods of Theoretical Physics (McGraw‐Hill, New York, 1953), p. 1108.
3.
P.
Roussopolos
,
Compt. Rend.
236
,
1858
(
1953
).
4.
H.
Levine
and
J.
Schwinger
,
Phys. Rev.
75
,
1423
(
1949
).
5.
D. S. Selengut, “Variational Analysis of Multidimensional Systems,” Hanford Report HW‐59126 (1959), p. 89.
6.
G. C.
Pomraning
,
J. Soc. Ind. Appl. Math.
13
,
511
(
1965
).
7.
G. C.
Pomraning
,
J. Math. Phys.
8
,
149
(
1967
);
also
G. C.
Pomraning
,
J. Nucl. Energy, Pts. A/B
,
21
,
285
(
1967
).
8.
L. N.
Usachev
,
J. Nucl. Energy, Pts. A/B
,
18
,
571
(
1964
).
9.
A.
Gandini
,
J. Nucl. Energy, Pts. A/B
,
21
,
755
(
1967
).
10.
L. M.
Delves
,
Nucl. Phys.
41
,
497
(
1963
).
11.
F.
Storrer
,
A.
Khairallah
,
M.
Cadilhac
, and
P.
Benoist
,
Nucl. Sci. Eng.
24
,
153
(
1966
).
12.
W. M.
Stacey
, Jr.
,
Nucl. Sci. Eng.
42
,
233
(
1970
).
13.
A. Gandini, M. Salvatores, and I. Dal Bono, “Sensitivity Study of Fast Reactors Using Generalized Perturbation Techniques,” Fast Reactor Physics (IAEA, Vienna, 1968), Vol. 1, p. 241.
14.
A.
Gandini
and
M.
Salvatores
,
Nucl. Sci. Eng.
41
,
452
(
1970
).
15.
J. L. Rowlands and J. D. MacDougall, “The Use of Integral Measurements to Adjust Cross Sections and Predict Reactor Properties,” in Proceedings of the International Conference on Physics of Fast Reactor Operation and Design (British Nucl. Energy Soc., London, 1969).
16.
J. Y. Barre, M. Heindler, T. Lacapelle, and J. Ravier, “Lessons Drawn from Integral Experiments on a Set of Multigroup Cross Sections,” in Ref. 15.
17.
G. Birkhoff and R. S. Varga, “Reactor Criticality and Non‐Negative Matrices,” WAPD‐166, Bettis Atomic Power Laboratory (1957);
also R. S. Varga, Matrix Iterative Analvsis (Prentice‐Hall, Englewood Cliffs, N.J., 1962).
18.
B. Friedman, Principles and Techniques of Applied Mathematics, (Wiley, New York, 1956), Chap. 1.
This content is only available via PDF.
You do not currently have access to this content.