The perturbation series for the statistical operators of quantum statistical mechanics developed earlier is applied to provide a perturbation theory for the grand canonical Gibbs states of a self‐interacting fermion system. Explicit formulas for an interaction Hamiltonian which is a polynomial in creation‐annihilation operators are provided.

1.
D. A.
Uhlenbrock
,
J. Math. Phys.
12
,
2503
(
1971
).
2.
D.
Shale
and
W. F.
Stinespring
,
Ann. Math.
80
,
365
(
1964
).
3.
R. T. Powers, “Representations of the Canonical Anticommutation Relations,” Thesis, Dept. of Physics, Princeton University (June, 1967).
4.
G. F.
Dell’Antonio
,
Commun. Math. Phys.
9
,
81
(
1968
);
G.
Rideau
,
Commun. Math. Phys.
9
,
229
(
1968
).
5.
E.
Balslev
,
J.
Manuceau
, and
A.
Verbeure
,
Commun. Math. Phys.
8
,
315
(
1968
).
6.
R. T. Powers and E. Sto/rmer, “Free States of the Canonical Anticommutation Relations,” U. of Pennsylvania, preprint (1970).
7.
E. Hille and R. S. Phillips, Functional Analysis and Semigroups Revised edition (Amer. Math. Soc. Colloquium, Providence, R.I., 1957), Vol. 31.
8.
D.
Kastler
,
J. C. T.
Pool
, and
E. T.
Poulsen
,
Commun. Math. Phys.
12
,
175
(
1969
).
The precursor to this paper is
R.
Haag
,
N. M.
Hugenholtz
, and
M.
Winnink
,
Commun. Math. Phys.
5
,
215
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.