The causal Meyer‐Suura structure functions are projected into irreducible representations of the Lorentz group. A clarification of the connection between light‐cone singularities and Lorentz poles is obtained: We find that in general a light‐cone singularity of the type 1/(− x2 + iεx0)α, in the operator product of the hadronic electromagnetic current, is built up from a sequence of Lorentz poles at λn = 1 + α − n whose residues are polynomials of order n in the virtual photon square mass.

1.
H.
Leutwyler
and
J.
Stern
,
Phys. Letters
31B
,
458
(
1970
);
J. M.
Cornwall
,
D.
Corrigan
, and
R. E.
Norton
,
Phys. Rev. D
3
,
536
(
1971
).
2.
R.
Gatto
and
P.
Menotti
,
Nuovo Cimento
2A
,
881
(
1971
).
3.
S.
Ferrara
and
G.
Rossi
,
Nuovo Cimento Lett.
4
,
408
(
1970
),
and
S.
Ferrara
and
G.
Rossi
,
Nuovo Cimento
4A
,
851
(
1971
).
4.
J. W.
Meyer
and
H.
Suura
,
Phys. Rev.
160
,
1366
(
1967
).
5.
I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions (Academic, New York, 1966), Vol. 5, Chap. VI.
6.
S.
Ferrara
,
R.
Gatto
, and
A. F.
Grillo
,
Nucl. Phys.
B34
,
349
(
1971
).
7.
M.
Toller
,
Nuovo Cimento
53A
,
671
(
1968
).
8.
W. Rühl, The Lorentz Group and Harmonic Analysis (Benjamin, New York, 1970).
9.
J. S.
Zmuidzinas
,
J. Math. Phys.
7
,
761
(
1966
).
10.
A. Erdélyi, et al., Higher Trascendental Functions (McGraw‐Hill New York, 1953), Vol. 2, Chap. VII, Sec. VII. 2. 2.
11.
S.
Ferrara
and
G.
Mattioli
,
Ann. Phys. (N.Y.)
59
,
444
(
1970
).
12.
A. Erdélyi, Table of Integral Transforms (McGraw‐Hill New York, 1954), Vol. I, p. 331.
13.
W.
Rühl
,
Commun. Math. Phys.
10
,
199
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.