The main objective of this article is the relativistic generalization of the ordinary SO(3)‐irreducible spin tensor operators for particles with positive mass. Two classes of relativistic one‐particle tensor operators are constructed. The tensor operators of the first class transform according to those representations of the Poincaré group that are induced by the one‐valued unitary irreducible representations of the pseudo‐unitary group SU(1, 1) which belong to the continuous principal and the discrete principal series. These tensors are operator‐valued functions of a spacelike 4‐momentum transfer. The tensor operators of the second class correspond to vanishing 4‐momentum transfer. They transform according to those representations of the Poincaré group that are induced by the unitary irreducible representations of the pseudo‐orthogonal group SO(3, 1) or its universal covering group SL(2C) which belong to the principal series. Both classes of Poincaré‐irreducible tensor operators are constructed in a spin helicity basis for timelike 4‐momentum by means of projection operators which are continuous linear superpositions of unitary operator realizations for the groups SU(1, 1) and SL(2C). The Clebsch‐Gordan coefficients associated with the reduction into the two classes of Poincaré‐irreducible tensor operators of a dyadic product of spin‐helicity basis vectors are calculated.

1.
H. Joos, “Complex Angular Momentum and the Representations of the Poincaré Group with Space‐like Momentum,” Lectures in Theoretical Physics (Boulder, Colorado, 1964)
(Gordon and Breach, New York, 1965), Vol. VIIA, pp. 132–38.
2.
V.
Bargmann
,
Ann. Math.
48
,
568
(
1947
).
3.
V. S.
Popov
,
Zh. Eksp. Teor. Fiz.
37
,
1116
(
1959
)
[
V. S.
Popov
,
Sov. Phys. JETP
10
,
794
(
1959
)].
4.
I. S.
Shapiro
,
Dokl. Akad. Nauk SSSR
106
,
647
(
1956
)
[
I. S.
Shapiro
,
Sov. Phys. Doklady
1
,
91
(
1956
)].
5.
Chou
Kuang‐Chao
and
L. G.
Zastavenko
,
Zh. Eksp. Teor. Fiz.
35
,
1417
(
1958
)
[
Chou
Kuang‐Chao
and
L. G.
Zastavenko
,
Sov. Phys. JETP
8
,
990
(
1959
)].
6.
J. Strathdee, J. F. Boyce, R. Delbourgo, and A. Salam, International Centre for Theoretical Physics, Trieste, Italy IC/67/9, 1967.
7.
H.
Joos
and
R. S.
Schrader
,
Commun. Math. Phys.
7
,
21
(
1968
).
8.
A. Böhm, “Rigged Hilbert Space and Mathematical Description of Physical Systems,” Lectures in Theoretical Physics (Boulder, Colorado, 1966)
(Gordon and Breach, New York, 1967), Vol. 9A, pp. 255–317.
9.
E. P.
Wigner
,
Ann. Math.
40
,
39
(
1939
).
10.
H.
Joos
,
Fortschr. Phys.
10
,
65
(
1962
).
11.
J. S.
Lomont
,
J. Math. Phys.
1
,
237
(
1960
).
12.
A.
Sciarrino
and
M.
Toller
,
J. Math. Phys.
8
,
1252
(
1967
).
13.
L.
Sertorio
and
M.
Toller
,
Nuovo Cimento
33
,
413
(
1964
).
14.
V. I.
Ritus
,
Zh. Eksp. Teor. Fiz.
40
,
352
(
1961
)
[
V. I.
Ritus
,
Sov. Phys. JETP
13
,
240
(
1961
)].
15.
Harish‐Chandra
,
Proc. Roy. Soc. (London)
A189
,
372
(
1947
).
16.
M. A. Naimark, Linear Representations of the Lorentz Group (Pergamon, New York, 1964).
17.
W. Pauli, “Continuous Groups in Quantum Mechanics,” Springer Tracts in Modern Physics (Springer‐Verlag, Berlin, 1965), Vol. 37, pp. 85–104.
18.
S.
Ström
,
Arkiv Fysik
29
,
467
(
1965
);
S.
Ström
,
33
,
465
(
1966
).,
Ark. Fys.
19.
W. H. Greiman, Ph.D. thesis, Iowa State University, 1969.
20.
D. V.
Due
and
N. V.
Hieu
,
Ann. Inst. Henri Poincaré
6
,
17
(
1967
).
21.
L. C.
Biedenharn
,
Ann. Phys. (N.Y.)
4
,
104
(
1958
).
22.
M. J.
Csonka
,
M.
Moravesik
, and
M. D.
Scadron
,
Ann. Phys. (N.Y.)
40
,
100
(
1966
).
23.
A. D.
Steiger
and
K. J.
Fritz
,
Nuovo Cimento
51
,
461
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.