After a brief discussion of well‐known classical fields we formulate two principles: When the field equations are hyperbolic, particles move along rays like disturbances of the field; the waves associated with stable particles are exceptional. This means that these waves will not transform into shock waves. Both principles are applied to nonlinear electrodynamics. The starting point of the theory is a Lagrangian which is an arbitrary nonlinear function of the two electromagnetic invariants. We obtain the laws of propagation of photons and of charged particles, along with an anisotropic propagation of the wavefronts. The general ``exceptional'' Lagrangian is found. It reduces to the Lagrangian of Born and Infeld when some constant (probably simply connected with the Planck constant) vanishes. A nonsymmetric tensor is introduced in analogy to the Born‐Infeld theory, and finally, electromagnetic waves are compared with those of Einstein‐Schrödinger theory.

1.
G.
Boillat
,
J. Math. Phys.
10
,
452
(
1969
).
2.
J. Hadamard, Leçons sur la propagation des ondes (Hermann & Cie, Paris, 1903).
3.
G. Boillat, La propagation des ondes (Gauthier‐Villars, Paris, 1965).
For the case of nonhyperbolic fields see
G.
Boillat
,
Compt. Rend.
270A
(
1970
) (to be published).
4.
P. D.
Lax
,
Ann. Math. Studies
33
,
211
(
1954
);
P. D.
Lax
,
Commun. Pure Appl. Math.
10
,
537
(
1957
).
5.
A. Jeffrey and T. Taniuti, Non‐linear Wave Propagation (Academic Press Inc., New York, 1964).
6.
A. Lichnerowicz, Théories relativistes de la gravitation et de V l’électromagnétisme (Masson & Cie., Paris, 1955).
7.
H. C.
Kranzer
,
Math. Rev.
33
,
6148
(
1967
);
J.
Bazer
and
W. B.
Ericson
,
Astrophys. J.
129
,
758
(
1959
).
8.
A. H.
Taub
,
Arch. Ratl. Mech.
3
,
312
(
1959
);
A.
Lichnerowicz
,
Commun. Math. Phys.
1
,
328
(
1966
).
9.
Y.
Choquet‐Bruhat
,
Astron. Acta
6
,
354
(
1960
);
P. Reichel, Institute of Mathematical Sciences, New York University, Report NYO‐7697, 1958;
K. O. Friedrichs and H. Kranzer, Institute of Mathematical Sciences, New York University, Report NYO‐6486, 1958.
10.
G.
Boillat
,
Compt. Rend.
263A
,
646
(
1966
).
11.
M.
Born
and
L.
Infeld
,
Proc. Roy. Soc. (London)
144A
,
425
(
1934
).
12.
G.
Boillat
,
Compt. Rend.
262A
,
1285
(
1966
).
13.
G.
Boillat
,
Ann. Inst. Henri Poincaré
5A
,
217
(
1966
).
14.
G. Boillat (to be published). See Ref. 1.
15.
J.
Lameau
,
Cahiers Phys.
19
,
229
(
1965
).
Cf.
R.
Pellicer
and
R. J.
Torrence
,
J. Math. Phys.
10
,
1718
(
1969
).
16.
G.
Boillat
,
Compt. Rend.
264A
,
209
(
1967
).
17.
L.
Mariot
,
Compt. Rend.
238
,
2055
(
1954
);
L.
Mariot
,
239
,
1189
(
1954
).,
Compt. Rend.
18.
J. L. Synge, Relativity: The Special Theory (North‐Holland Publ. Co., Amsterdam, 1958).
19.
G.
Boillat
,
Compt. Rend.
262A
,
1364
(
1966
).
20.
G.
Boillat
,
Phys. Letters
27A
,
192
(
1968
).
21.
G. Valiron, Equations fonctionnelles: Applications (Masson & Cie., Paris, 1950), pp. 557–60.
22.
G.
Boillat
,
Compt. Rend.
262A
,
884
(
1966
).
23.
G.
Boillat
,
Compt. Rend.
264A
,
1113
(
1967
).
24.
D.
Blokhintsev
and
V.
Orlov
,
Zh. Eksp. Teor. Fiz.
25
,
513
(
1953
);
T.
Taniuti
,
Progr. Theoret. Phys. (Kyoto) Suppl.
9
,
69
(
1958
).
25.
M.
Lutzky
and
J. S.
Toll
,
Phys. Rev.
113
,
1649
(
1959
).
26.
W.
Heisenberg
and
H.
Euler
,
Z. Physik
98
,
714
(
1936
).
27.
This condition also derives from the variational principle if ζ is varied arbitrarily. Moreover, if we assume that both values of ζ can be used in building the Lagrangian, we are led to the results of Sec. 2H, i.e., to the exceptional Lagrangian.
28.
M.‐A. Tonnelat, Les théories unitaires de l’électromagnétisme et de la gravitation (Gauthier‐Villars, Paris, 1965).
29.
F.
Maurer‐Tison
,
Ann. Sci. École. Norm. Super.
76
,
185
(
1959
).
30.
C.
Mo/ller
,
Mat.‐Fys. Skr. Danske Vid. Selsk.
1
, No.
10
(
1961
).
31.
V.
Hlavatý
,
J. Ratl. Mech. Anal.
,
2
,
2
(
1953
).
This content is only available via PDF.
You do not currently have access to this content.