Ground‐state properties of the Hamiltonian
H=12J i=1N σi·σi+1 + 12i=1N σi·σi+2
N+1 ≡ σ1, σN+2 ≡ σ2) are studied for both signs of J and −1 ≤ α ≤ 1 to gain insight into the stability of the ground state with nearest‐neighbor interactions only (α = 0) in the presence of the next‐nearest‐neighbor interaction. Short chains of up to 8 particles have been exactly studied. For J > 0, the ground state for even N belongs always to spin zero, but its symmetry changes for certain values of α. For J < 0, the ground state belongs either to the highest spin (ferromagnetic state) or to the lowest spin and so to zero for even N. The trend of the results suggests that these facts are true for arbitrary N and that the critical value of α is probably zero. Upper and lower bounds to the ground‐state energy per spin of the above Hamiltonian are obtained. Such bounds can also be obtained for the square lattice with the nearest‐ as well as the next‐nearest‐neighbor interaction.
1.
H.
Bethe
,
Z. Physik
71
,
205
(
1931
).
2.
L.
Hulthén
,
Arkiv Mat. Astron. Fysik
26A
, No.
11
(
1938
).
3.
J.
des Cloizeaux
and
J. J.
Pearson
,
Phys. Rev.
128
,
2131
(
1962
).
4.
R. B.
Griffiths
,
Phys. Rev.
133
,
A768
(
1964
).
5.
C.
Herring
,
Rev. Mod. Phys.
34
,
631
(
1962
).
6.
C. Herring, in Magnetism, G. T. Rado and H. Suhl, Eds. (Academic Press Inc., New York, 1966), Vol. IV.
7.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Letters
17
,
1133
(
1966
).
8.
R.
Orbach
,
Phys. Rev.
112
,
309
(
1958
);
R.
Orbach
,
115
,
1181
(
1959
).,
Phys. Rev.
9.
C. N.
Yang
and
C. P.
Yang
,
Phys. Rev.
147
,
303
(
1966
);
C. N.
Yang
and
C. P.
Yang
,
150
,
321
,
327
(
1966
); ,
Phys. Rev.
C. N.
Yang
and
C. P.
Yang
,
151
,
258
(
1966
).,
Phys. Rev.
10.
J. S. Smart, in Magnetism, G. T. Rado and H. Suhl, Eds. (Academic Press Inc., New York, 1963), Vol. III.
11.
E. P.
Wigner
and
J.
von Neumann
,
Physik. Z.
30
,
467
(
1929
).
12.
E. H.
Lieb
and
D. C.
Mattis
,
J. Math. Phys.
3
,
749
(
1962
).
13.
F.
Bloch
,
Z. Physik
59
,
208
(
1930
).
14.
D. Littlewood, The Theory of Group Characters (Oxford University Press, London, 1940).
15.
H. Weyl, Classical Groups (Princeton University Press, Princeton, N.J., 1946).
16.
A.
Mukhopadhẏaya
,
J. Combinatorial Theory
2
,
290
(
1967
).
17.
G. Uhlenbeck and G. W. Ford, in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, Eds. (North‐Holland Publishing Co., Amsterdam, 1962), Vol. I, p. 119.
This content is only available via PDF.
You do not currently have access to this content.