With the aid of a model representing each molecule as a set of semi‐isotropic dipole oscillators, the London‐van der Waals interaction energy of a pair of unexcited axially symmetric molecules is calculated, in the second order of perturbation theory, as an infinite series in negative powers of the intermolecular separation.

1.
F.
London
,
Z. Physik
63
,
245
(
1930
).
2.
H.
Margenau
,
Phys. Rev.
38
,
747
(
1931
).
3.
H.
Margenau
,
Rev. Mod. Phys.
11
,
1
(
1939
).
4.
R.
Heller
,
J. Chem. Phys.
9
,
156
(
1941
).
5.
B. C.
Carlson
and
G. S.
Rushbrooke
,
Proc. Cambridge Phil. Soc.
46
,
626
(
1950
).
6.
M. E.
Rose
,
J. Math. & Phys.
37
,
215
(
1958
).
7.
F.
London
,
Z. Physik. Chem. (Leipzig)
B11
,
222
(
1930
).
8.
See, for example, J. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), p. 956.
9.
H.
Margenau
,
J. Chem. Phys.
6
,
896
(
1938
).
10.
F. C.
Brooks
,
Phys. Rev.
86
,
92
(
1952
).
11.
P. R.
Fontana
,
Phys. Rev.
123
,
1865
(
1961
).
12.
A.
Dalgarno
and
J. T.
Lewis
,
Proc. Phys. Soc. (London)
A69
,
57
(
1956
).
13.
W. L.
Bade
,
J. Chem. Phys.
27
,
1280
(
1957
).
14.
F.
London
,
J. Phys. Chem.
46
,
305
(
1942
).
15.
A. J.
van der Merwe
,
Z. Physik
196
,
212
(
1966
).
16.
See, for example, M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), Chap. 4.
17.
Reference 16, Eq. (6.42).
18.
We follow the notation (except for typographical variations) and conventions of Ref. 16.
19.
Reference 16, Eq. (4.13).
20.
Reference 16, Eq. (4.30).
21.
See J. L. Powell and B. Crasemann, Quantum Mechanics (Addison‐Wesley Publ. Co., Inc., Reading, Mass., 1965), Chap. 7.
This content is only available via PDF.
You do not currently have access to this content.