The properties of SU3 finite transformations are investigated. These transformations on the defining three‐dimensional complex space are parameterized in a form employing three factors, two of which are the Euler parameterization of an SU2 subgroup. The irreducible representations of the factored parameterization are found explicitly. The volume element is calculated and the orthogonality relation is verified. Spherical harmonic basis states are derived as a specialization of the transformation matrix. Another result is a definition of triality and a simple proof that it is additive modulus three.

1.
Francis D. Murnaghan, The Unitary and Rotation Group (Spartan Books, Washington, D.C., 1962).
2.
T. J.
Nelson
,
J. Math. Phys.
8
,
857
(
1967
).
3.
E.
Chacon
and
M.
Moshinsky
,
Phys. Letters
23
,
567
(
1966
).
4.
M.
Beg
and
H.
Ruegg
,
J. Math. Phys.
6
,
677
(
1965
).
5.
Herman Weyl, Classical Groups (Princeton University Press, Princeton, New Jersey, 1946).
6.
G. C. Baird and L. C. Biedenharn, Proceedings of the Coral Gables Conference on Symmetry Principles at High Energy, B. Kursunoglu, Ed. (W. H. Freeman and Co., San Francisco, 1964).
7.
C. R.
Hagan
and
A. J.
Macfarlane
,
J. Math. Phys.
5
,
1335
(
1964
).
8.
G. C.
Baird
and
L. C.
Biedenharn
,
J. Math. Phys.
4
,
1449
(
1963
).
9.
N.
Mukunda
and
L. K.
Pandit
,
J. Math. Phys.
6
,
746
(
1965
).
10.
Kurt Gottfried, Quantum Mechanics, Vol. I (W. A. Benjamin, Inc., New York, 1966).
11.
P. Carruthers, Introduction to Unitary Symmetry, Interscience Tracts on Physics and Astronomy No. 27 (Interscience Publishers, Inc., New York, 1966).
12.
J. J.
de Swart
,
Rev. Mod. Phys.
35
,
916
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.