The Landau singularities of the amplitude calculated from an arbitrary Feynman graph are considered. It is shown that the discontinuity across a branch cut starting from any Landau singularity is obtained by replacing Feynman propagators by delta functions for those lines which appear in the Landau diagram. The general formula is a simple generalization of the unitarity condition. The discontinuity is then considered as an analytic function of the momenta and masses; it is shown that its singularities are a subclass of the singularities of the original amplitude which corresponds to Landau diagrams with additional lines. The general results are illustrated by application to some single loop graphs. In particular, the general formula gives an immediate calculation of the Mandelstam spectral function for fourth‐order scattering. Singularities not of the Landau type are discussed and illustrated by the third‐order vertex part.

This content is only available via PDF.
You do not currently have access to this content.