In 1954, Asakura and Oosawa1 explained that nonadsorbing macromolecules can induce attractive forces between colloidal particles in a single page paper in this journal. The effective pair interaction between the colloidal particles mediated by the nonadsorbing species is nowadays often termed the Asakura–Oosawa (AO) potential.2  Figure 1 illustrates such a colloid–polymer mixture and its tendency to phase separate into a phase enriched in colloids and a phase concentrated in polymers due to the attraction mediated by nonadsorbing polymer chains.

FIG. 1.

Snapshots of an animation of a colloid–polymer mixture. The spheres are the colloidal particles that are mixed with the nonadsorbing polymer chains. The upper animation reflects the system just after mixing. The lower sketch shows that the dispersion gets inhomogeneous after some time if the concentration of the nonadsorbing polymers (sometimes called depletants) is sufficiently high. See also the simplified animation on http://youtu.be/tEsvuSnW-9Y.

FIG. 1.

Snapshots of an animation of a colloid–polymer mixture. The spheres are the colloidal particles that are mixed with the nonadsorbing polymer chains. The upper animation reflects the system just after mixing. The lower sketch shows that the dispersion gets inhomogeneous after some time if the concentration of the nonadsorbing polymers (sometimes called depletants) is sufficiently high. See also the simplified animation on http://youtu.be/tEsvuSnW-9Y.

Close modal

This special issue of The Journal of Chemical Physics contains a collection of papers related to the concept introduced by Asakura and Oosawa. We are very honored that the late professor Oosawa contributed to this issue with a historical overview3 on the origin of the Asakura–Oosawa theory. In his synopsis, he explains that he came to Nagoya to “do some unorthodox physics” and that experimental results have stimulated him to theoretically consider the effects of adding macromolecules to colloids.

Kurihara and Vincent4 discussed how, after a lag time of about 20 years, the theory was rediscovered in the 1970s via experimental studies on colloid–polymer mixtures.5,6

In the same period, Vrij7 independently found that excluded volume interactions in a colloidal dispersion containing an additional component have important consequences for the effective interactions, structure,8 and phase stability.9,10 Vrij explicitly introduced the description of penetrable hard spheres (PHSs) to describe the nonadsorbing polymers, which was implicitly proposed by AO. In hindsight, the delayed recognition clarifies that Asakura and Oosawa were ahead of their time. Since the 1980s, especially in the 1990s, attention concerning the influence of nonadsorbing macromolecules on the interaction between colloidal particles and the resulting phase behavior of colloid–polymer and binary colloidal mixtures gained increasing interest (see Fig. 2 in Ref. 4).

In 1980, the term “depletion”11 was introduced to describe the effect of nonadsorbing species near a surface. In the field of colloid chemistry, the accumulation of species (ions, polymers, and proteins) at (colloidal) surfaces received quite some attention after the 1960s (see, for instance, Refs. 12 and 13). Terms such as positive and negative adsorption were common, and the latter was also termed depletion.

In the decades that followed the work of Vincent5,6,14,15 and Vrij7–10 and their co-workers, various theoretical tools were applied to better understand the microstructure, pair depletion interactions, and phase stability of colloid–polymer mixtures. We summarize these below with a focus on bulk properties. For some relevant references on the interface physics in colloid–polymer mixtures, see Refs. 16–22.

A key step was the application of thermodynamic perturbation theory by Gast, Hall, and Russel23 to predict the phase behavior of colloid–polymer mixtures to interpret systematic experiments24,25 that were performed in several laboratories. At the same time, field theoretical methods were employed to understand the detailed polymer physics related to depletion.26–28 Shaw and Thirumalai29 formulated a reference interaction site model for colloids and combined it with the Edwards model for polymers to explain depletion stabilization effects:11,30,31 at high polymer concentrations, repulsive contributions to the pair interactions appear.

Methods such as free volume theory (FVT),32 polymer reference interaction site model (PRISM) integral equation theory,33 integrating out the depletant using an effective one-component Hamiltonian,34 density functional theory (DFT),35–37 and a Gaussian core model38 were applied to gain insight into depletion effects. Many theories treat polymers as effective soft spheres, which can be useful when considering dilute solutions of polymers much smaller than the particles, the so-called “colloid limit.” New physics emerges in polymer semidilute solutions and melts, and it was found that the solvent quality also matters. Accounting for polymer physics is also relevant particularly in the “protein” limit,39–41 where the particles are small with respect to the polymer chains. The “protein” limit regime is of particular interest also for (cell) biology.

Free volume theory (FVT)32 (see also Ref. 42) is a simple, yet insightful and reasonably accurate, theory for the macroscopic phase behavior that also enables partitioning of colloids and depletants over the phases to be predicted. For colloid–polymer mixtures described as hard spheres plus PHS, the predicted phase diagrams correspond to computer simulation results.43,44 FVT also allows accounting for interactions between the depletants45,46 and to evaluate the rich phase behavior of anisotropic colloids mixed with nonadsorbing polymers.47,48

Microscopic equilibrium theories of thermodynamics, structure, and phase separation of polymer–particle suspensions that explicitly treat polymers and their conformational degrees of freedom were created by generalizing the PRISM integral equation approach.33,49 The role of particle size (from the protein to colloid limits), polymer concentration (dilute and semidilute good and theta solvent conditions50 and dense melts51), arbitrary particle volume fractions, and the full microstructural correlations were determined in a unified manner.

Experimental work focusing on measuring (i) the pair interaction (see, e.g., Refs. 52–55), (ii) the structure of the dispersion mediated by nonadsorbing polymers,56 and the phase behavior57,58 of well-defined colloid–polymer mixtures appeared. PRISM equilibrium predictions were successfully confronted against experiments.59,60

Soon, nonequilibrium phenomena in multi-component mixtures and the role of depletion effects61–64 gained interest from both theoreticians and experimentalists.65 Knowledge of the structural correlations computed using PRISM theory allowed microscopic dynamical theories of slow colloid dynamics to be constructed, at both the mode coupling and activated dynamics level. Quantitative predictions for the structural relaxation time, formation of glasses and gels, nonlinear rheology, and delayed gel collapse66–68 were made and compared with experiments.69,70

The short-range and controlled strength of attraction induced by the AO interactions also offers an ideal playground for studying the glass transition and gelation of dense colloidal suspensions. In 2000, the mode-coupling theory (MCT), which is one of the most successful first-principles theories to describe the slow dynamics of the glass transition, has been applied to the hard-sphere system with short-range attraction.71 It unveiled the existence of a series of singular dynamical ideal glass transitions as well as the re-entrance of the repulsive-to-attractive glass transitions. The theoretical prediction was soon verified by experiments for a mixture of colloidal particles interacting via the AO potential induced by depletant polymers.63,72

Progress on all the above elements was stimulated by computer simulation. Several works have focused on the influence of depletion-induced attraction on the structural and dynamical behavior of colloids, highlighting, for example, the onset of attractive and repulsive glasses and the occurrence of reentrant melting when the range of the depletion attraction is very small.73,74 The idea to tune the “sticky” interaction by changing the concentration of the depletant has been extended to colloidal suspensions with lower densities and sparked a series of experimental and numerical studies on colloidal gels (see Refs. 75 and 76 and references therein). These studies succeeded in explaining the route from the glass transition at high densities to gelation of colloidal particles by tuning the concentration of depletant.

Another important research topic concerns the fate of the attractive glass/gel line at lower densities and the interplay with phase separation.77 For the latter, an appropriate combination of simulations and confocal microscopy experiments was able to show that such a line intersects the binodal at high densities, giving rise to so-called arrested phase separation.76 Arrested states induced by depletion have also been studied extensively in the context of hard-sphere/star polymer78 or star/star mixtures.79 The introduction of soft interactions is found to enrich the phenomenology of glass transitions and the interplay between the two species80 compared to binary mixtures of hard spheres.81 

As indicated above, the interest was broadening and systems such as colloidal spheres plus multi-component depletants82 and dispersions of star polymers (soft colloids) plus linear polymers dispersions83,84 received interest, as well as mixtures of different types of star polymers.85 Besides studying the effects of nonadsorbing polymers as depletants, it is also of interest to treat colloids themselves as depletants added to a dispersion of larger or different colloids. Depletion effects also can be encountered in mixtures of self-assembling block copolymers in a selective solvent under the influence of nonadsorbing polymers.86,87 The phase behavior of hard-sphere binary asymmetric mixtures gained attention in the 1990s.88–91 Fundamental studies using DFT37 helped to quantify the effective interactions and microstructural effects.35 Studies of depletion effects in mixtures of different particle shapes are also gaining interest.92–94 It also became clear that more specific effects, such as charges,95,96 the presence of polymer brushes,97,98 solvent quality,99,100 and polydispersity,101–104 are important.

A very interesting research direction involves systems where depletion attraction competes with a long-range repulsion, often of electrostatic nature, giving rise to the onset of equilibrium cluster phases and arrested states where clusters are dominant,105 with important implications to understand features of solutions of globular proteins. Recent reviews on this topic can be found in Refs. 106 and 107. In addition, simulations have been very useful to locate and characterize gas–liquid (colloid-rich/colloid poor) phase separation of the Asakura–Oosawa effective potential,108 clarifying that this belongs, as expected, to the Ising universality class. Investigations on binary mixtures of colloids and polymers109 where non-ideality effects of the polymer are taken into account have also been explored.

Another rich direction of work in simulations is to calculate effective interactions between colloids immersed in different kinds of solutes that are more complex than polymers. This can be achieved by umbrella sampling or by exploiting virtual moves in Monte Carlo simulations. With these methods, depletion induced by soft spheres or microgels has been investigated.110 The latter have also been recently used in experiments to modify the depletion interactions in situ, exploiting the thermoresponsive character of microgels.111,112 Furthermore, a promising class of depletants involves a self-assembling medium, such as a patchy co-solute, forming supramolecular chains113–115 or clusters116 or even in the vicinity of a critical point,117,118 thus providing a connection between depletion interactions and critical Casimir forces.

Colloid synthesis has evolved to such a degree119,120 that it is nowadays possible to make colloidal particles of a wide range of shapes.121–125 This, and the fact that anisotropic shapes occur in nature, has triggered studies on mixtures of non-spherical colloids plus added nonadsorbing polymers. Hence, insights have been obtained into the phase behavior in mixtures of rods,93,126–129 platelets,47,130–132 and cubes133–135 plus added polymers. In addition, nonequilibrium phenomena are quite relevant here.136,137

Insights into depletion effects inspired by the Asakura–Oosawa concepts have also gained attention in the life science field. Already at an early stage,138–140 it was appreciated that the large volume fraction occupied by the macromolecules in living cells has consequences. Walter and Brooks141 suggested that macromolecular crowding is the basis for microcompartmentation. As summarized a few years ago,142 excluded volume effects are thought to be of importance to explain several intracellular processes.143,144 Hence, depletion effects are suggested to mediate several types of biological processes, including dynamics.145,146

It is abundantly clear that macromolecular crowding affects all aspects of biological processes ranging from transcription to self-organization of the molecules of life. Nowhere is it more transparent than in crowding-driven structural transitions in protein-like polymers,147,148 conformational switches between active states of RNA,149 and depletion effects on the conformations of DNA.150–152 Depletion effects play a similar role in protein dispersions153,154 and dispersed bacteria155 as in colloidal suspensions. There are many more biological processes in which crowding effects, especially the consequences of polydispersity, have not been explored at all. Quantifying the effects of entropic forces in biology remains a virgin area for additional research.

In materials science, depletion effects were used in various ways to self-organize colloidal systems. An example is to select the strength of the attraction by introducing colloidal surface roughness,156–158 which allows the creation of colloidal micelles.159 The use of the different shapes can help to tune the strength of the depletion attraction. This can facilitate the use of depletion effects to make colloidal “key-lock” systems.160 An interesting element that is gaining interest in this field is the influence of colloidal shape on the self-assembly of colloidal particles119,161 and how shape can induce “entropic patchiness.”

It is clear that the depletion field has begun to develop in many different new directions, of which we mention a few that connect to the contributions in this special issue:

  • Influence of solvent quality and solvation on depletion effects mediated by polymers (see Refs. 162 and 163).

  • Macromolecular crowding. In this issue, some novel insights are presented (see Refs. 164–169).

  • Interesting findings on charged colloids, proteins, and bacteria upon addition of nonadsorbing polymers, while also specific effects of polyelectrolytes are considered (see Refs. 170–174).

  • Confinement of multi-component mixtures (see Refs. 175 and 176).

  • Complex (hard/patchy) colloidal mixtures (see Refs. 177 and 178).

  • Fundamental insights into (i) the fluid–fluid phase transitions using DFT (see Refs. 179 and 180) and (ii) equilibrium cluster fluids.181 

  • Anisotropic colloids and depletion effects (see Refs. 182–185).

  • Glasses in colloid–polymer mixtures (see Refs. 186–188).

  • Nonequilibrium phenomena in colloidal mixtures (see Refs. 189 and 190).

After almost 70 years, it turns out that the classical theory of Asakura and Oosawa is very much alive. This collection of papers highlights the relevance of the Asakura–Oosawa theory and shows its promise to further understand multi-component soft matter systems, with significant relevance for science, technology, and biology.

We thank associate editors John E. Straub, Francesco Sciortino, David R. Reichman, and Carlos Vega for enabling the assembly of this special edition. We also acknowledge the Editor-in-Chief Tim Lian and appreciate the help of Jenny Stein and Judith Thomas. Finally, we thank all authors who contributed.

1.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
2.

The AO(V) potential is often specifically used for the effective depletion interaction between colloidal particles mediated by penetrable hard spheres (PHS) to describe the nonadsorbing species, which are also termed depletants. PHS are ghost spheres that do not interact with themselves but which are hard spheres for the colloidal particles. Here we use the AO potential in a general way to identify the effective potential mediated by the nonadsorbing species.

3.
F.
Oosawa
, “
The history and birth of the Asakura–Oosawa theory
,”
J. Chem. Phys.
155
,
084104
(
2021
).
4.
K.
Kurihara
and
B.
Vincent
, “
The discovery of the depletion force
,”
J. Chem. Phys.
154
,
220401
(
2021
).
5.
J. A.
Long
,
D. W. J.
Osmond
, and
B.
Vincent
, “
The equilibrium aspects of weak flocculation
,”
J. Colloid Interface Sci.
42
,
545
553
(
1973
).
6.
F. K. R.
Lin-In-On
,
B.
Vincent
, and
F. A.
Waite
, “
Stability of sterically stabilized dispersions at high polymer concentrations
,”
ACS Symp. Ser.
9
,
165
172
(
1974
).
7.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
8.
H.
De Hek
and
A.
Vrij
,
J. Colloid Interface Sci.
88
,
258
(
1982
).
9.
H.
De Hek
and
A.
Vrij
,
J. Colloid Interface Sci.
70
,
592
(
1979
).
10.
H.
De Hek
and
A.
Vrij
,
J. Colloid Interface Sci.
84
,
409
(
1981
).
11.
R. I.
Feigin
and
D. H.
Napper
, “
Depletion stabilization and depletion flocculation
,”
J. Colloid Interface Sci.
75
,
525
541
(
1980
).
12.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1989
).
13.
J.
Lyklema
,
Fundamentals in Colloid and Interface Science
(
Elsevier
,
Amsterdam
,
1991–2005
), Vols. 1–5.
14.
C.
Cowell
,
R.
Li-In-On
,
B.
Vincent
, and
F. A.
Waite
,
J. Chem. Soc., Faraday Trans. 1
74
,
337
(
1978
).
15.
B.
Vincent
,
P. F.
Luckham
, and
F. A.
Waite
,
J. Colloid Interface Sci.
73
,
508
(
1980
).
16.
J. M.
Brader
,
R.
Evans
,
M.
Schmidt
, and
H.
Löwen
, “
Entropic wetting and the fluid–fluid interface of a model colloid-polymer mixture
,”
J. Phys.: Condens. Matter
14
,
L1
L8
(
2001
).
17.
A.
Moncho-Jord´
,
J.
Dzubiella
,
J. P.
Hansen
, and
A. A.
Louis
, “
Density-functional study of interfacial properties of colloid-polymer mixtures
,”
J. Phys. Chem. B
109
,
6640
6649
(
2005
).
18.
C. P.
Royall
,
D. G. A. L.
Aarts
, and
H.
Tanaka
, “
Bridging length scales in colloidal liquids and interfaces from near-critical divergence to single particles
,”
Nat. Phys.
3
,
636
640
(
2007
).
19.
H. N. W.
Lekkerkerker
,
V. W. A.
de Villeneuve
,
J. W. J.
de Folter
,
M.
Schmidt
,
Y.
Hennequin
,
D.
Bonn
,
J. O.
Indekeu
, and
D. G. A. L.
Aarts
, “
Life at ultralow interfacial tension: Wetting, waves and droplets in demixed colloid-polymer mixtures
,”
Eur. Phys. J. B
64
,
341
347
(
2008
).
20.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
21.
J.
Jover
,
A.
Galindo
,
G.
Jackson
,
E. A.
Müller
, and
A. J.
Haslam
, “
Fluid–fluid coexistence in an athermal colloid–polymer mixture: Thermodynamic perturbation theory and continuum molecular-dynamics simulation
,”
Mol. Phys.
113
,
2608
2628
(
2015
).
22.
M.
Vis
,
K. J. H.
Brouwer
,
Á.
González García
,
A. V.
Petukhov
,
O.
Konovalov
, and
R.
Tuinier
, “
Quantification of the structure of colloidal gas–liquid interfaces
,”
J. Phys. Chem. Lett.
11
,
8372
8377
(
2020
).
23.
A. P.
Gast
,
C. K.
Hall
, and
W. B.
Russel
, “
Polymer-induced phase separations in nonaqueous colloidal suspensions
,”
J. Colloid Interface Sci.
96
,
251
267
(
1983
).
24.
A. P.
Gast
,
W. B.
Russel
, and
C. K.
Hall
,
J. Colloid Interface Sci.
109
,
161
(
1986
).
25.
B.
Vincent
,
J.
Edwards
,
S.
Emmett
, and
R.
Croot
, “
Phase separation in dispersions of weakly-interacting particles in solutions of non-adsorbing polymer
,”
Colloids Surf.
31
,
267
298
(
1988
).
26.
J. F.
Joanny
,
L.
Leibler
, and
P. G.
de Gennes
,
J. Polym. Sci.: Polym. Phys.
17
,
1073
(
1979
).
27.
E.
Eisenriegler
,
J. Chem. Phys.
79
,
1052
(
1983
).
28.
E.
Eisenriegler
,
A.
Hanke
, and
S.
Dietrich
,
Phys. Rev. E
54
,
1134
(
1996
).
29.
M. R.
Shaw
and
D.
Thirumalai
, “
Free polymer in a colloidal solution
,”
Phys. Rev. A
44
,
R4797
R4800
(
1991
).
30.
J.
van der Gucht
,
N. A. M.
Besseling
,
J.
van Male
, and
M. A.
Cohen Stuart
,
J. Chem. Phys.
113
,
2886
(
2000
).
31.
A. N.
Semenov
and
A. A.
Shvets
, “
Theory of colloid depletion stabilization by unattached and adsorbed polymers
,”
Soft Matter
11
,
8863
8878
(
2015
).
32.
H. N. W.
Lekkerkerker
,
W. C.-K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
, “
Phase-behavior of colloid plus polymer mixtures
,”
Europhys. Lett.
20
,
559
564
(
1992
).
33.
M.
Fuchs
and
K. S.
Schweizer
, “
Structure of colloid-polymer suspensions
,”
J. Phys.: Condens. Matter
14
,
R239
(
2002
).
34.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
,
J. Phys.: Condens. Matter
11
,
10079
(
1999
).
35.
R.
Roth
,
R.
Evans
, and
S.
Dietrich
,
Phys. Rev. E
62
,
5360
(
2000
).
36.
M.
Schmidt
,
H.
Löwen
,
J. M.
Brader
, and
R.
Evans
,
J. Phys.: Condens. Matter
14
,
9353
(
2002
).
37.
R.
Evans
,
M.
Oettel
,
R.
Roth
, and
G.
Kahl
, “
New developments in classical density functional theory
,”
J. Phys.: Condens. Matter
28
,
240401
(
2016
).
38.
P. G.
Bolhuis
,
A. A.
Louis
,
J. P.
Hansen
, and
E. J.
Meijer
,
J. Chem. Phys.
114
,
4296
(
2001
).
39.
T.
Odijk
,
Macromolecules
29
,
1842
(
1996
).
40.
T.
Odijk
,
J. Chem. Phys.
106
,
3402
(
1997
).
41.
P. G.
Bolhuis
,
E. J.
Meijer
, and
A. A.
Louis
,
Phys. Rev. Lett.
90
,
068304
(
2003
).
42.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
, Lecture Notes in Physics Vol. 833 (
Springer
,
Dordrecht
,
2011
), p.
233
.
43.
A.
Moncho-Jordá
,
A. A.
Louis
,
P. G.
Bolhuis
, and
R.
Roth
,
J. Phys.: Condens. Matter
15
,
S3429
(
2003
).
44.
M.
Dijkstra
,
R.
van Roij
,
R.
Roth
, and
A.
Fortini
,
Phys. Rev. E
73
,
041404
(
2006
).
45.
D. G. A. L.
Aarts
,
R.
Tuinier
, and
H. N. W.
Lekkerkerker
,
J. Phys.: Condens. Matter
14
,
7551
(
2002
).
46.
G. J.
Fleer
and
R.
Tuinier
,
Adv. Colloid Interface Sci.
143
,
1
47
(
2008
).
47.
Á.
González García
,
R.
Tuinier
,
J. V.
Maring
,
J.
Opdam
,
H. H.
Wensink
, and
H. N. W.
Lekkerkerker
, “
Depletion-driven four-phase coexistences in discotic systems
,”
Mol. Phys.
116
,
2757
2772
(
2018
).
48.
V. F. D.
Peters
,
M.
Vis
,
Á.
González García
,
H. H.
Wensink
, and
R.
Tuinier
, “
Defying the Gibbs phase rule: Evidence for an entropy-driven quintuple point in colloid-polymer mixtures
,”
Phys. Rev. Lett.
125
,
127803
(
2020
).
49.
M.
Fuchs
and
K. S.
Schweizer
, “
Structure and thermodynamics of colloid-polymer mixtures: A macromolecular approach
,”
Europhys. Lett.
51
,
621
(
2000
).
50.
Y.-L.
Chen
,
K. S.
Schweizer
, and
M.
Fuchs
, “
Phase separation in suspensions of colloids, polymers and nanoparticles: Role of solvent quality, physical mesh, and nonlocal entropic repulsion
,”
J. Chem. Phys.
118
,
3880
(
2003
).
51.
D.
Banarjee
and
K. S.
Schweizer
, “
Multi-scale entropic depletion phenomena in dense polymer liquids
,”
J. Chem. Phys.
142
,
214903
(
2015
).
52.
R.
Verma
,
J. C.
Crocker
,
T. C.
Lubensky
, and
A. G.
Yodh
,
Macromolecules
33
,
177
(
2000
).
53.
M.
Piech
and
J. Y.
Walz
,
J. Colloid Interface Sci.
225
,
134
(
2000
).
54.
L.
Helden
,
G. H.
Koenderink
,
P.
Leiderer
, and
C.
Bechinger
,
Langmuir
20
,
5662
(
2004
).
55.
D.
Kleshchanok
,
R.
Tuinier
, and
P. R.
Lang
,
Langmuir
22
,
9121
(
2007
).
56.
X.
Ye
,
T.
Narayanan
,
P.
Tong
,
J. S.
Huang
,
M. Y.
Lin
,
B. L.
Carvalho
, and
L. J.
Fetters
,
Phys. Rev. E
54
,
6500
(
1996
).
57.
F. L.
Calderon
,
J.
Bibette
, and
J.
Biais
,
Europhys. Lett.
23
,
653
(
1993
).
58.
S. M.
Ilett
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
51
,
1344
1352
(
1995
).
59.
S.
Ramakrishnan
,
M.
Fuchs
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Entropy driven phase transitions in colloid-polymer suspensions: Tests of depletion theories
,”
J. Chem. Phys.
116
,
2211
(
2002
).
60.
S. A.
Shah
,
Y.-L.
Chen
,
S.
Ramakrishnan
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Microstructure of dense colloid-polymer suspensions and gels
,”
J. Phys.: Condens. Matter
15
,
4751
(
2003
).
61.
I.
Bodnár
,
J. K. G.
Dhont
, and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
100
,
19614
(
1994
).
62.
W.
Wolthers
,
D.
van den Ende
,
M. H. G.
Duits
, and
J.
Mellema
, “
The viscosity and sedimentation of aggregating colloidal dispersions in a Couette flow
,”
J. Rheol.
40
,
55
67
(
1996
).
63.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaı̈d
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
64.
R.
Tuinier
,
J. K. G.
Dhont
, and
T.-H.
Fan
,
Europhys. Lett.
75
,
929
(
2006
).
65.
V. J.
Anderson
and
H. N. W.
Lekkerkerker
, “
Insights into phase transition kinetics from colloid science
,”
Nature
416
,
811
815
(
2002
).
66.
Y.-L.
Chen
and
K. S.
Schweizer
, “
Microscopic theory of gelation and elasticity in polymer-particle suspensions
,”
J. Chem. Phys.
120
,
7212
(
2004
).
67.
Y.-L.
Chen
,
V.
Kobelev
, and
K. S.
Schweizer
, “
Barrier hopping, viscous flow and kinetic gelation in particle-polymer suspensions
,”
Phys. Rev. E
71
,
041405
(
2005
).
68.
V.
Kobelev
and
K. S.
Schweizer
, “
Dynamic yielding, shear thinning and stress rheology of polymer-particle suspensions and gels
,”
J. Chem. Phys.
123
,
164903
(
2005
).
69.
S. A.
Shah
,
Y.-L.
Chen
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Viscoelasticity and rheology of depletion flocculated gels and fluids
,”
J. Chem. Phys.
119
,
8747
(
2003
).
70.
S.
Ramakrishnan
,
Y.-L.
Chen
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Elasticity and clustering in concentrated depletion gels
,”
Phys. Rev. E
70
,
040401(R)
(
2004
).
71.
K.
Dawson
,
G.
Foffi
,
M.
Fuchs
,
W.
Götze
,
F.
Sciortino
,
M.
Sperl
,
P.
Tartaglia
,
T.
Voigtmann
, and
E.
Zaccarelli
, “
Higher-order glass-transition singularities in colloidal systems with attractive interactions
,”
Phys. Rev. E
63
,
011401
(
2000
).
72.
T.
Eckert
and
E.
Bartsch
, “
Re-entrant glass transition in a colloid-polymer mixture with depletion attractions
,”
Phys. Rev. Lett.
89
,
125701
(
2002
).
73.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
, “
Comparative simulation study of colloidal gels and glasses
,”
Phys. Rev. Lett.
88
,
098301
(
2002
).
74.
E.
Zaccarelli
,
G.
Foffi
,
K. A.
Dawson
,
S. V.
Buldyrev
,
F.
Sciortino
, and
P.
Tartaglia
, “
Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
,”
Phys. Rev. E
66
,
041402
(
2002
).
75.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
76.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
77.
F.
Cardinaux
,
T.
Gibaud
,
A.
Stradner
, and
P.
Schurtenberger
, “
Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions
,”
Phys. Rev. Lett.
99
,
118301
(
2007
).
78.
E.
Stiakakis
,
D.
Vlassopoulos
,
C. N.
Likos
,
J.
Roovers
, and
G.
Meier
, “
Polymer-mediated melting in ultrasoft colloidal gels
,”
Phys. Rev. Lett.
89
,
208302
(
2002
).
79.
C.
Mayer
,
F.
Sciortino
,
C. N.
Likos
,
P.
Tartaglia
,
H.
Löwen
, and
E.
Zaccarelli
, “
Multiple glass transitions in star polymer mixtures: Insights from theory and simulations
,”
Macromolecules
42
,
423
434
(
2009
).
80.
C.
Mayer
,
E.
Zaccarelli
,
E.
Stiakakis
,
C. N.
Likos
,
F.
Sciortino
,
A.
Munam
,
M.
Gauthier
,
N.
Hadjichristidis
,
H.
Iatrou
,
P.
Tartaglia
et al, “
Asymmetric caging in soft colloidal mixtures
,”
Nat. Mater.
7
,
780
784
(
2008
).
81.
T.
Voigtmann
, “
Multiple glasses in asymmetric binary hard spheres
,”
Europhys. Lett.
96
,
36006
(
2011
).
82.
N.
Park
and
J. C.
Conrad
, “
Phase behavior of colloid–polymer depletion mixtures with unary or binary depletants
,”
Soft Matter
13
,
2781
2792
(
2017
).
83.
E.
Stiakakis
,
G.
Petekidis
,
D.
Vlassopoulos
,
C. N.
Likos
,
H.
Iatrou
,
N.
Hadjichristidis
, and
J.
Roovers
, “
Depletion and cluster formation in soft colloid-polymer mixtures
,”
Europhys. Lett.
72
,
664
670
(
2005
).
84.
M.
Camargo
and
C. N.
Likos
, “
Unusual features of depletion interactions in soft polymer-based colloids mixed with linear homopolymers
,”
Phys. Rev. Lett.
104
,
078301
(
2010
).
85.
D.
Marzi
,
B.
Capone
,
J.
Marakis
,
M. C.
Merola
,
D.
Truzzolillo
,
L.
Cipelletti
,
F.
Moingeon
,
M.
Gauthier
,
D.
Vlassopoulos
,
C. N.
Likos
, and
M.
Camargo
, “
Depletion, melting and reentrant solidification in mixtures of soft and hard colloids
,”
Soft Matter
11
,
8296
8312
(
2015
).
86.
S.
Abbas
and
T. P.
Lodge
, “
Depletion interactions: A new control parameter for the self-assembly of diblock copolymer micelles
,”
Phys. Rev. Lett.
99
,
137802
(
2007
).
87.
Á.
González García
,
A.
Ianiro
,
R.
Beljon
,
F. A. M.
Leermakers
, and
R.
Tuinier
, “
(Homo)polymer-mediated colloidal stability of micellar solutions
,”
Soft Matter
16
,
1560
1571
(
2020
).
88.
T.
Biben
and
J.-P.
Hansen
,
Phys. Rev. Lett.
66
,
2215
(
1991
).
89.
H. N. W.
Lekkerkerker
and
A.
Stroobants
,
Physica A
195
,
387
(
1993
).
90.
J. S.
Van Duijneveldt
,
A. W.
Heinen
, and
H. N. W.
Lekkerkerker
,
Europhys. Lett.
21
,
369
(
1993
).
91.
A.
Imhof
and
J. K. G.
Dhont
,
Phys. Rev. Lett.
75
,
1662
(
1995
).
92.
F. M.
van der Kooij
and
H. N. W.
Lekkerkerker
, “
Liquid-crystalline phase behavior of a colloidal rod-plate mixture
,”
Phys. Rev. Lett.
84
,
781
784
(
2000
).
93.
Z.
Dogic
and
S.
Fraden
, “
Phase behavior of rod-like viruses and virus–sphere mixtures
,” in
Soft Matter: Complex Colloidal Suspensions
(
John Wiley & Sons, Ltd.
,
2006
), Vol. 2, Chap. 1, pp.
1
86
.
94.
R.
Aliabadi
,
M.
Moradi
, and
S.
Varga
, “
Tracking three-phase coexistences in binary mixtures of hard plates and spheres
,”
J. Chem. Phys.
144
,
074902
(
2016
).
95.
A.
Kose
and
S.
Hachisu
,
J. Colloid Interface Sci.
55
,
487
(
1976
).
96.
P. D.
Patel
and
W. B.
Russel
,
J. Colloid Interface Sci.
131
,
192
(
1989
).
97.
C. M.
Wijmans
,
E. B.
Zhulina
, and
G. J.
Fleer
,
Macromolecules
27
,
3238
(
1994
).
98.
M. A.
Faers
and
P. F.
Luckham
,
Langmuir
13
,
2922
(
1997
).
99.
G. J.
Fleer
,
A. M.
Skvortsov
, and
R.
Tuinier
,
Macromolecules
36
,
7857
(
2003
).
100.
G.
D’Adamo
,
A.
Pelissetto
, and
C.
Pierleoni
, “
Depletion effects in colloid–polymer solutions
,”
Mol. Phys.
111
,
3372
3393
(
2013
).
101.
D.
Goulding
and
J.-P.
Hansen
,
Mol. Phys.
99
,
865
(
2001
).
102.
P.
Paricaud
,
S.
Varga
,
P. T.
Cummings
, and
G.
Jackson
,
Chem. Phys. Lett.
398
,
489
(
2004
).
103.
M.
Fasolo
and
P.
Sollich
,
J. Chem. Phys.
122
,
074904
(
2005
).
104.
M.
Fasolo
and
P.
Sollich
,
J. Phys.: Condens. Matter
17
,
797
(
2005
).
105.
A.
Stradner
,
H.
Sedgwick
,
F.
Cardinaux
,
W. C. K.
Poon
,
S. U.
Egelhaaf
, and
P.
Schurtenberger
, “
Equilibrium cluster formation in concentrated protein solutions and colloids
,”
Nature
432
,
492
495
(
2004
).
106.
Y.
Liu
and
Y.
Xi
, “
Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics
,”
Curr. Opin. Colloid Interface Sci.
39
,
123
136
(
2019
).
107.
J.
Ruiz-Franco
and
E.
Zaccarelli
, “
On the role of competing interactions in charged colloids with short-range attraction
,”
Annu. Rev. Condens. Matter Phys.
12
,
51
70
(
2021
).
108.
R. L. C.
Vink
and
J.
Horbach
, “
Grand canonical Monte Carlo simulation of a model colloid–polymer mixture: Coexistence line, critical behavior, and interfacial tension
,”
J. Chem. Phys.
121
,
3253
3258
(
2004
).
109.
J.
Zausch
,
P.
Virnau
,
K.
Binder
,
J.
Horbach
, and
R. L.
Vink
, “
Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura–Oosawa model
,”
J. Chem. Phys.
130
,
064906
(
2009
).
110.
L.
Rovigatti
,
N.
Gnan
,
A.
Parola
, and
E.
Zaccarelli
, “
How soft repulsion enhances the depletion mechanism
,”
Soft Matter
11
,
692
700
(
2015
).
111.
M. J.
Bergman
,
N.
Gnan
,
M.
Obiols-Rabasa
,
J.-M.
Meijer
,
L.
Rovigatti
,
E.
Zaccarelli
, and
P.
Schurtenberger
, “
A new look at effective interactions between microgel particles
,”
Nat. Commun.
9
,
5039
(
2018
).
112.
L.
Rossi
,
V.
Soni
,
D. J.
Ashton
,
D. J.
Pine
,
A. P.
Philipse
,
P. M.
Chaikin
,
M.
Dijkstra
,
S.
Sacanna
, and
W. T. M.
Irvine
, “
Shape- sensitive crystallization in colloidal superball fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
5286
5290
(
2015
).
113.
W.
Knoben
,
N. A. M.
Besseling
, and
M. A.
Cohen Stuart
, “
Long-range depletion forces induced by associating small molecules
,”
Phys. Rev. Lett.
97
,
068301
(
2006
).
114.
V. F. D.
Peters
,
M.
Vis
, and
R.
Tuinier
, “
Phase stability of colloidal spheres mixed with supramolecular rod-like polymers
,”
J. Polym. Sci.
59
,
1175
1187
(
2021
).
115.
V. F. D.
Peters
,
R.
Tuinier
, and
M.
Vis
, “
Phase stability of colloidal spheres mixed with semiflexible supramolecular polymers
,”
J. Colloid Interface Sci.
608
,
644
651
(
2022
).
116.
N.
Gnan
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Casimir-like forces at the percolation transition
,”
Nat. Commun.
5
,
3267
(
2014
).
117.
S.
Buzzaccaro
,
J.
Colombo
,
A.
Parola
, and
R.
Piazza
, “
Critical depletion
,”
Phys. Rev. Lett.
105
,
198301
(
2010
).
118.
N.
Gnan
,
E.
Zaccarelli
,
P.
Tartaglia
, and
F.
Sciortino
, “
How properties of interacting depletant particles control aggregation of hard-sphere colloids
,”
Soft Matter
8
,
1991
1996
(
2012
).
119.
S. C.
Glotzer
and
M. J.
Solomon
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
6
,
557
562
(
2007
).
120.
S.
Sacanna
and
D. J.
Pine
, “
Shape-anisotropic colloids: Building blocks for complex assemblies
,”
Curr. Opin. Colloid Interface Sci.
16
,
96
105
(
2011
).
121.
V. N.
Manoharan
,
M. T.
Elsesser
, and
D. J.
Pine
, “
Dense packing and symmetry in small clusters of microspheres
,”
Science
301
,
483
487
(
2003
).
122.
D. J.
Kraft
,
W. S.
Vlug
,
C. M.
van Kats
,
A.
van Blaaderen
,
A.
Imhof
, and
W. K.
Kegel
, “
Self-assembly of colloids with liquid protrusions
,”
J. Am. Chem. Soc.
131
,
1182
1186
(
2009
).
123.
G.
Meng
,
N.
Arkus
,
M. P.
Brenner
, and
V. N.
Manoharan
, “
The free-energy landscape of clusters of attractive hard spheres
,”
Science
327
,
560
563
(
2010
).
124.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
491
,
51
55
(
2012
).
125.
J. M.
Meijer
and
L.
Rossi
, “
Preparation, properties, and applications of magnetic hematite microparticles
,”
Soft Matter
17
,
2354
2368
(
2021
).
126.
H. N. W.
Lekkerkerker
and
A.
Stroobants
, “
Phase behaviour of rod-like colloid + flexible polymer mixtures
,”
Nuovo Cimento D
16
,
949
962
(
1994
).
127.
J.
Buitenhuis
,
L. N.
Donselaar
,
P. A.
Buining
,
A.
Stroobants
, and
H. N. W.
Lekkerkerker
,
J. Colloid Interface Sci.
175
,
46
(
1995
).
128.
P. G.
Bolhuis
,
A.
Stroobants
,
D.
Frenkel
, and
H. N. W.
Lekkerkerker
,
J. Chem. Phys.
107
,
1551
(
1997
).
129.
Z.
Dogic
and
S.
Fraden
,
Curr. Opin. Colloid Interface Sci.
11
,
47
(
2006
).
130.
S.-D.
Zhang
,
P. A.
Reynolds
, and
J. S.
van Duijneveldt
,
J. Chem. Phys.
117
,
9947
(
2002
).
131.
S.-D.
Zhang
,
P. A.
Reynolds
, and
J. S.
van Duijneveldt
,
Mol. Phys.
100
,
3041
(
2002
).
132.
F. M.
Van der Kooij
,
M.
Vogel
, and
H. N. W.
Lekkerkerker
,
Phys. Rev. E
62
,
5397
(
2000
).
133.
L.
Rossi
,
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
,
D. J.
Pine
, and
A. P.
Philipse
, “
Cubic crystals from cubic colloids
,”
Soft Matter
7
,
4139
4142
(
2011
).
134.
F.
Dekker
,
Á.
González García
,
A. P.
Philipse
, and
R.
Tuinier
,
Eur. Phys. J. E
43
,
38
(
2020
).
135.
C. A.
Saez Cabezas
,
Z. M.
Sherman
,
M. P.
Howard
,
M. N.
Dominguez
,
S. H.
Cho
,
G. K.
Ong
,
A. M.
Green
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Universal gelation of metal oxide nanocrystals via depletion attractions
,”
Nano Lett.
20
,
4007
4013
(
2020
).
136.
T.
Schilling
,
S.
Jungblut
, and
M. A.
Miller
, “
Depletion-induced percolation in networks of nanorods
,”
Phys. Rev. Lett.
98
,
108303
(
2007
).
137.
J.
Landman
,
E.
Paineau
,
P.
Davidson
,
I.
Bihannic
,
L. J.
Michot
,
A.-M.
Philippe
,
A. V.
Petukhov
, and
H. N. W.
Lekkerkerker
, “
Effects of added silica nanoparticles on the nematic liquid crystal phase formation in beidellite suspensions
,”
J. Phys. Chem. B
118
,
4913
4919
(
2014
).
139.
G. B.
Ralston
,
J. Chem. Educ.
67
,
857
(
1990
).
140.
D. S.
Goodsell
,
Trends Biochem. Sci.
16
,
203
206
(
1991
).
141.
H.
Walter
and
D. E.
Brooks
,
FEBS Lett.
361
,
135
(
1995
).
142.
L.
Sapir
and
D.
Harries
, “
Wisdom of the crowd
,”
Bunsen Mag.
19
,
152
162
(
2017
).
143.
A. P.
Minton
,
Curr. Opin. Struct. Biol.
10
,
34
(
2000
).
144.
M. S.
Cheung
,
D.
Klimov
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
4753
(
2005
).
145.
A.
Zöttl
and
J. M.
Yeomans
, “
Driven spheres, ellipsoids and rods in explicitly modeled polymer solutions
,”
J. Phys.: Condens. Matter
31
,
234001
(
2019
).
146.
F.
Zosel
,
A.
Soranno
,
K. J.
Buholzer
,
D.
Nettels
, and
B.
Schuler
, “
Depletion interactions modulate the binding between disordered proteins in crowded environments
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
13480
13489
(
2020
).
147.
Y.
Snir
and
R. D.
Kamien
, “
Entropically driven helix formation
,”
Science
307
,
1067
(
2005
).
148.
A.
Kudlay
,
M. S.
Cheung
, and
D.
Thirumalai
, “
Crowding effects on the structural transitions in a flexible helical homopolymer
,”
Phys. Rev. Lett.
102
,
118101
(
2009
).
149.
N. A.
Denesyuk
and
D.
Thirumalai
, “
Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA
,”
J. Am. Chem. Soc.
133
,
11858
11861
(
2011
).
150.
T.
Odijk
, “
Osmotic compaction of supercoiled DNA into a bacterial nucleoid
,”
Biophys. Chem.
73
,
23
29
(
1998
).
151.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
, “
The depletion attraction: An underappreciated force driving cellular organization
,”
J. Cell Biol.
175
,
681
686
(
2006
).
152.
H.
Kang
,
N. M.
Toan
,
C.
Hyeon
, and
D.
Thirumalai
, “
Unexpected swelling of stiff DNA in a polydisperse crowded environment
,”
J. Am. Chem. Soc.
137
,
10970
10978
(
2015
).
153.
A. M.
Kulkarni
,
A. P.
Chatterjee
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Effects of polyethylene glycol on protein interactions
,”
J. Chem. Phys.
113
,
9863
9873
(
2000
).
154.
R.
Tuinier
,
J. K. G.
Dhont
, and
C. G.
de Kruif
,
Langmuir
16
,
1497
(
2000
).
155.
J.
Schwarz-Linek
,
G.
Dorken
,
A.
Winkler
,
L. G.
Wilson
,
N. T.
Pham
,
C. E.
French
,
T.
Schilling
, and
W. C. K.
Poon
, “
Polymer-induced phase separation in suspensions of bacteria
,”
Europhys. Lett.
89
,
68003
(
2010
).
156.
K.
Zhao
and
T. G.
Mason
, “
Directing colloidal self-assembly through roughness-controlled depletion attractions
,”
Phys. Rev. Lett.
99
,
268301
(
2007
).
157.
M.
Kamp
,
M.
Hermes
,
C. M.
van Kats
,
D. J.
Kraft
,
W. K.
Kegel
,
M.
Dijkstra
, and
A.
van Blaaderen
, “
Selective depletion interactions in mixtures of rough and smooth silica spheres
,”
Langmuir
32
,
1233
1240
(
2016
).
158.
P.
Anzini
and
A.
Parola
, “
How roughness affects the depletion mechanism
,”
Soft Matter
13
,
5150
5157
(
2017
).
159.
D. J.
Kraft
,
R.
Ni
,
F.
Smallenburg
,
M.
Hermes
,
K.
Yoon
,
D. A.
Weitz
,
A.
van Blaaderen
,
J.
Groenewold
,
M.
Dijkstra
, and
W. K.
Kegel
, “
Surface roughness directed self-assembly of patchy particles into colloidal micelles
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
10787
10792
(
2012
).
160.
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
, and
D. J.
Pine
, “
Lock and key colloids
,”
Nature
464
,
575
(
2010
).
161.
G.
van Anders
,
D.
Klotsa
,
N. K.
Ahmed
,
M.
Engel
, and
S. C.
Glotzer
, “
Understanding shape entropy through local dense packing
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
E4812
E4821
(
2014
).
162.
A. R.
Denton
and
W. J.
Davis
, “
Influence of solvent quality on depletion potentials in colloid–polymer mixtures
,”
J. Chem. Phys.
155
,
084904
(
2021
).
163.
Y.
Nakamura
,
A.
Yoshimori
, and
R.
Akiyama
, “
Solvation effects on diffusion processes of a macromolecule: Accuracy required for radial distribution function to calculate diffusion coefficient
,”
J. Chem. Phys.
154
,
084501
(
2021
).
164.
K.
Suda
,
A.
Suematsu
, and
R.
Akiyama
, “
Lateral depletion effect on two-dimensional ordering of bacteriorhodopsins in a lipid bilayer: A theoretical study based on a binary hard-disk model
,”
J. Chem. Phys.
154
,
204904
(
2021
).
165.
A. M.
Tom
,
W. K.
Kim
, and
C.
Hyeon
, “
Polymer brush-induced depletion interactions and clustering of membrane proteins
,”
J. Chem. Phys.
154
,
214901
(
2021
).
166.
T.
Waizumi
,
H.
Sakuta
,
M.
Hayashi
,
K.
Tsumoto
,
K.
Takiguchi
, and
K.
Yoshikawa
, “
Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect
,”
J. Chem. Phys.
155
,
075101
(
2021
).
167.
Y.
Jung
and
B.-Y.
Ha
, “
Collapse transition of a heterogeneous polymer in a crowded medium
,”
J. Chem. Phys.
155
,
054902
(
2021
).
168.
G.
Chauhan
,
M. L.
Simpson
, and
S. M.
Abel
, “
Adsorption of semiflexible polymers in crowded environments
,”
J. Chem. Phys.
155
,
034904
(
2021
).
169.
H.-L.
Sung
,
A.
Sengupta
, and
D.
Nesbitt
, “
Smaller molecules crowd better: Crowder size dependence revealed by single-molecule FRET studies and depletion force modeling analysis
,”
J. Chem. Phys.
154
,
155101
(
2021
).
170.
M.
Ioka
,
A.
Toyotama
,
M.
Yamaguchi
,
J.
Nozawa
,
S.
Uda
,
T.
Okuzono
,
M.
Yoshimura
, and
J.
Yamanaka
, “
Crystallization of charged gold particles mediated by nonadsorbing like-charged polyelectrolyte
,”
J. Chem. Phys.
154
,
234901
(
2021
).
171.
J.
Landman
,
M. P. M.
Schelling
,
R.
Tuinier
, and
M.
Vis
, “
Repulsive and attractive depletion forces mediated by nonadsorbing polyelectrolytes in the Donnan limit
,”
J. Chem. Phys.
154
,
164904
(
2021
).
172.
A.
Suematsu
and
R.
Akiyama
, “
Solvent effect for an effective attraction between like-charged macroions immersed in an electrolyte solution: The intensification mechanism of the effective attraction caused by the translational motion of solvent particles
,”
J. Chem. Phys.
154
,
034902
(
2021
).
173.
R.
Cheng
,
J.
Li
,
I.
Ríos de Anda
,
T. W. C.
Taylor
,
M. A.
Faers
,
J. L. R.
Anderson
,
A. M.
Seddon
, and
C. P.
Royall
, “
Protein–polymer mixtures in the colloid limit: Aggregation, sedimentation, and crystallization
,”
J. Chem. Phys.
155
,
114901
(
2021
).
174.
V. F. D.
Peters
,
M.
Vis
,
R.
Tuinier
, and
H. N. W.
Lekkerkerker
, “
Phase separation in mixed suspensions of bacteria and nonadsorbing polymers
,”
J. Chem. Phys.
154
,
151101
(
2021
).
175.
S. A.
Egorov
, “
Phase behavior of colloid-polymer mixtures in planar, spherical, and cylindrical confinement: A density functional theory study
,”
J. Chem. Phys.
154
,
184902
(
2021
).
176.
S.
Roy
and
Y.-L.
Chen
, “
Rich phase transitions in strongly confined polymer–nanoparticle mixtures: Nematic ordering, crystallization, and liquid–liquid phase separation
,”
J. Chem. Phys.
154
,
024901
(
2021
).
177.
P. H.
Handle
,
E.
Zaccarelli
, and
N.
Gnan
, “
Effective potentials induced by mixtures of patchy and hard co-solutes
,”
J. Chem. Phys.
155
,
064901
(
2021
).
178.
F.
Soto-Bustamante
,
N. E.
Valádez-Pérez
,
R.
Castañeda-Priego
, and
M.
Laurati
, “
Potential-invariant network structures in Asakura–Oosawa mixtures with very short attraction range
,”
J. Chem. Phys.
155
,
034903
(
2021
).
179.
N.
Ditz
and
R.
Roth
, “
Gas–liquid phase transition in a binary mixture with an interaction that creates constant density profiles
,”
J. Chem. Phys.
154
,
204905
(
2021
).
180.
F.
Gußmann
,
H.
Hansen-Goos
,
S.
Dietrich
, and
R.
Roth
, “
Liquid–liquid phase separation in an inhomogeneous ternary colloid–polymer mixture
,”
J. Chem. Phys.
154
,
224504
(
2021
).
181.
B. A.
Lindquist
, “
Inverse design of equilibrium cluster fluids applied to a physically informed model
,”
J. Chem. Phys.
154
,
174907
(
2021
).
182.
J.
Opdam
,
D.
Guu
,
M. P. M.
Schelling
,
D. G. A. L.
Aarts
,
R.
Tuinier
, and
M. P.
Lettinga
, “
Phase stability of colloidal mixtures of spheres and rods
,”
J. Chem. Phys.
154
,
204906
(
2021
).
183.
T. G.
Mason
, “
Depletion torques between anisotropic colloidal particles
,”
J. Chem. Phys.
155
,
144903
(
2021
).
184.
C.
Calero
,
M.
Díaz-Morata
, and
I.
Pagonabarraga
, “
Aggregation of discoidal particles due to depletion interaction
,”
J. Chem. Phys.
155
,
074904
(
2021
).
185.
J. A.
Wood
,
Y.
Liu
, and
A.
Widmer-Cooper
, “
Crystal nucleation in colloidal rod suspensions: The effect of depletant size
,”
J. Chem. Phys.
154
,
244505
(
2021
).
186.
X.
Ma
,
C. K.
Mishra
,
P.
Habdas
, and
A. G.
Yodh
, “
Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition
,”
J. Chem. Phys.
155
,
074902
(
2021
).
187.
S. E.
Griffiths
,
N.
Koumakis
,
A. T.
Brown
,
T.
Vissers
,
P. B.
Warren
, and
W. C. K.
Poon
, “
Diffusion, phase behavior, and gelation in a two-dimensional layer of colloids in osmotic equilibrium with a polymer reservoir
,”
J. Chem. Phys.
155
,
074903
(
2021
).
188.
D.
Parisi
,
M.
Camargo
,
K.
Makri
,
M.
Gauthier
,
C. N.
Likos
, and
D.
Vlassopoulos
, “
Effect of softness on glass melting and re-entrant solidification in mixtures of soft and hard colloids
,”
J. Chem. Phys.
155
,
034901
(
2021
).
189.
D. E.
Huang
and
R. N.
Zia
, “
Toward a flow-dependent phase-stability criterion: Osmotic pressure in sticky flowing suspensions
,”
J. Chem. Phys.
155
,
134113
(
2021
).
190.
M.
Gimperlein
and
M.
Schmiedeberg
, “
Structural and dynamical properties of dilute gel networks in colloid–polymer mixtures
,”
J. Chem. Phys.
154
,
244903
(
2021
).