The rotational spectrum of thiophene (c-C4H4S) has been collected between 8 and 360 GHz. Samples of varying deuterium-enrichment were synthesized to yield all possible deuterium-substituted isotopologues of thiophene. A total of 26 isotopologues have been measured and least-squares fit using A- and S-reduced distorted-rotor Hamiltonians in the Ir representation. The resultant rotational constants (A0, B0, and C0) from each reduction were converted to determinable constants (A″, B″, and C″) to remove the impact of centrifugal distortion. The computed vibrational and electron mass corrections [CCSD(T)/cc-pCVTZ] were applied to the determinable constants to obtain semi-experimental equilibrium rotational constants (Ae, Be, and Ce) for 24 isotopologues. A precise semi-experimental equilibrium (reSE) structure has been achieved from a least-squares fit of the equilibrium moments of inertia. The combination of the expanded isotopologue rotational data with high-level computational work establishes a precise reSE structure for this sulfur-containing heterocycle. The CCSD(T)/cc-pCV5Z structure has been obtained and corrected for the extrapolation to the complete basis set, electron correlation beyond CCSD(T), relativistic effects, and the diagonal Born–Oppenheimer correction. The precise reSE structure is compared to the resulting “best theoretical estimate” structure. Several of the best theoretical re structural parameters fall within the narrow statistical limits (2σ) of the reSE results. The possible origin of the discrepancies for the computed parameters that fall outside the statistical uncertainties is discussed.

Recently, a very satisfying level of agreement was achieved for pyrimidine between the semi-experimental equilibrium (reSE) parameters and the highest practical level of theoretical calculation available—differences no more than 0.0004 Å in bond distances and no more than 0.01° in bond angles.1 That result raises the question of whether or not such a level of agreement is possible in parallel treatments of other similarly sized molecules. While we have begun the study of similar species consisting of carbon, nitrogen, and hydrogen, we have also chosen to explore the impact of including third-row atoms in this methodology. Heavier atoms not only inherently present additional challenges regarding the computational level of theory and basis set but also may impact the ability of the theory to adequately treat the corrections to the rotational constants. The present study of thiophene was undertaken with the primary goal of attempting to answer that question for a prototypical sulfur-containing aromatic ring. Each component of this investigation represents a challenging undertaking: (i) chemical synthesis and purification of a substantial family of isotopologues of thiophene; (ii) measurement, assignment, and fitting of the high-resolution rotational spectrum of each isotopologue; (iii) computationally demanding calculations involving electronic structure, vibration–rotation coupling, and corrections for electron mass distribution; and (iv) theoretical methods for providing a “best theoretical estimate” (BTE) of the molecular structure. Integration of all of these data affords a highly precise semi-experimental structure (reSE) for thiophene. The method steps beyond the traditional Kraitchman analysis of structure determination by single-atom isotopic substitution and validates the ability of modern experimental and computational methods to establish the structure of an organic heterocyclic molecule containing a third-row element.

The five-membered, aromatic ring of thiophene (c-C4H4S, Fig. 1, C2v) is a fundamental molecular structural moiety in organic chemistry and is prevalent in pharmaceuticals2 and organic electronic materials.3,4 Thiophenes are naturally occurring on the Earth and have been detected on Mars.5,6 Thiophene itself has been proposed to be present in the interstellar medium,7 and unsaturated carbon-chain molecules containing sulfur have been detected.8,9 The rotational and vibrational spectroscopies of thiophene have been of interest for over a century. The first infrared absorption spectrum was reported in 1905 by Coblentz,10 and other Raman and infrared studies were reported in the 1930s and 1940s.11–14 In 1965, a low-resolution infrared study of liquid and vapor phase thiophenes and all its deuterio isotopologues (mono- through tetra-deuterio, except [2,4-2H]-thiophene) was published, including the assignment of their fundamental vibrations.15 The vibrational assignments were later reaffirmed,16 and the rotationally resolved IR spectrum of the ν13 band was reported by Pankoke et al.17 The rotationally resolved IR spectrum has subsequently been analyzed for ν14, ν8, and ν7 (400–750 cm−1)18,19 and ν13, ν7, ν6, ν5, and ν19 (600–1200 cm−1).20 These studies provided the rotational and centrifugal distortion constants for each of these vibrationally excited states, along with their precise vibrational frequencies. More recently, Raman and resonance Raman spectra of thiophenes, neat and in solution (cyclohexane, dimethyl sulfoxide, and methanol), have also been reported.21,22 Analysis of the fundamental, combination, and overtone vibrational states using rotational spectroscopy is on-going and will be the subject of a future work.

FIG. 1.

Thiophene (c-C4H4S, μa = 0.55 D) with its principal axes and numerical atom designations.

FIG. 1.

Thiophene (c-C4H4S, μa = 0.55 D) with its principal axes and numerical atom designations.

Close modal

The dipole moment of thiophene (0.55 ± 0.01 D)23 permits its observation by rotational spectroscopy. Bak et al. provided the rotational constants for the normal isotopologue of thiophene, four deuterated isotopologues,24 the 34S, and the two 13C isotopologues based on microwave spectral data from 12 to 30 GHz.25 Using Kraitchman’s equations,26 they determined the first substitution structure of thiophene (rs) from the normal and five mono-substituted isotopologues.25 These early microwave data were combined with electron diffraction and liquid-crystal nuclear magnetic resonance (NMR) data to determine the rα structure.27 Later, the microwave, electron diffraction, and vibrational spectroscopy were combined with computational methods to find a mixed-method, semi-experimental equilibrium structure (reSE).28 The work of Bak et al.24,25 was used to determine a subsequent semi-experimental equilibrium structure (reSE) with corrections for vibration–rotation interaction constants and electron mass distributions from density functional theory (DFT) methods.29,30 Although not utilized in the previous thiophene structure determinations, additional rotational transitions of the normal isotopologue have been reported in later works,31–34 as well as transitions for the 33S and 34S isotopologues.34 We have extended the number of isotopologues for which rotational constants are available to 26 isotopologues. Of these, 24 were included in the determination of the semi-experimental equilibrium structure (reSE) presented in this work. We have systematically investigated the extent to which additional isotopologues are valuable in reducing the statistical errors of the reSE structural parameters.

Rotational spectra of thiophene were collected at room temperature using three different spectrometers. The spectrum of thiophene was collected at the University of Toyama using two different instruments. The spectrum was collected between 40 and 121.5 GHz at sample pressures of 30–50 mTorr using instrumentation described previously.35,36 Additional transitions were measured between 8 and 18 GHz with a CP-FTMW spectrometer, based on the design of McJunkins and Brown,37 with a chirp span of 50–150 or 50–200 MHz, at sample pressures of 9–13 mTorr, with 10 000–50 000 molecular signal acquisitions. The broadband spectra of thiophene and its deuterium-containing isotopologues were collected at the University of Wisconsin–Madison from 130 to 230 and 235–360 GHz with a pressure of 5 mTorr using instrumentation described previously.38,39 The spectrum of the sample containing primarily tetradeuterio thiophene was collected only from 130 to 230 GHz. Spectral segments were combined into a single broadband spectrum using Kisiel’s Assignment and Analysis of Broadband Spectra (AABS) software package.40,41 ASFIT/ASROT were used for least-squares fits and spectral predictions,40,41 along with PLAN and AC programs for analysis.42 Measured transitions for each isotopologue were least-squares fit in the Ir representation and the A and S reductions. The ground state of the normal isotopologue has also been fit in both reductions in the IIIr representation. With the exception of a few new CP-FTMW measurements with 30 kHz uncertainties, all new measurements assume an experimental uncertainty of 50 kHz; all previously reported measurements use the uncertainty that was provided in either the original publication or a related publication using the same instrument.

Density functional theory calculations were performed using Gaussian 1643 with the WebMO interface.44 The optimized geometries were calculated at the B3LYP/6-311G+(2d,p) level utilizing a “verytight” convergence criterion and an “ultrafine” integration grid. An anharmonic frequency calculation was performed to obtain the quartic and sextic centrifugal distortion constants for the normal isotopologue. Natural population analysis and Natural Bond Orbital (NBO)/Natural Resonance Theory (NRT) analysis of thiolium cations (C-atom protonated thiophenes) were performed with NBO 7.0.8.45 

Coupled-cluster calculations with single, double, and perturbative triple excitations [CCSD(T)] were performed using CFOUR.46 Geometry optimizations were performed at the CCSD(T) level with the cc-pCVXZ basis set where X = D, T, Q, and 5. The structure computed at CCSD(T)/cc-pCVTZ was subsequently used for a second-order vibrational perturbation (VPT2) anharmonic frequency calculation by evaluating the cubic force constants using analytical second derivatives at displaced points.47–49 The VPT2 calculation was used to obtain anharmonic frequencies for each isotopologue and provide vibration–rotation interaction constants (αi), along with quartic and sextic distortion terms (in both the A and S reductions and Ir representation). The structure computed at the CCSD(T)/cc-pCVTZ level was also used for magnetic calculations to obtain the electron mass corrections to the rotational constants.50 Additional computational corrections to the CCSD(T)/cc-pCV5Z structure are used to determine the best theoretical structure. These corrections were performed following the method prescribed by Heim et al.1 and are specified below. The xrefit module of CFOUR was utilized to obtain the semi-experimental reSE structure by least-squares fitting of the isotopologue equilibrium moments of inertia.

The synthetic approach to deuterium incorporation, via isotopic exchange, is ideal for rotational spectroscopy, enabling the broadband spectra of all isotopologues to be obtained in a single experiment. The characteristics of thiophene’s rotational spectrum cause the transitions of each isotopologue to be relatively distinct, thereby minimizing problems with the identification and assignment of transitions because of overlapping signals from multiple species. The ability to prepare and measure a single sample containing multiple species represents dramatic savings in time and effort, relative to an alternative approach involving the chemical synthesis and measurement of each isotopologue, individually.

Deuterium-containing isotopologues of thiophene were prepared in a manner analogous to the incorporation of deuterium in other five-membered heteroaromatic ring compounds and previous efforts on thiophene itself.51–54 The acid-catalyzed reaction involved refluxing thiophene, D2O, and fuming sulfuric acid at 100 °C for five days [Scheme 1(a)]. The duration of reflux may be varied to control the level of deuterium–hydrogen exchange. The five-day reaction time generated a mixture containing all nine of the possible deuterium-containing isotopologues of the normal isotopologue of thiophene. To shift the distribution of isotopologues toward those with a higher level of deuterium incorporation, the same reaction was conducted with refluxing extended over two weeks, with the addition of more H2SO4 and D2O after seven days. This procedure yielded a small sample consisting of mostly tetra-deuterio thiophene, which provided transitions for the [2,3,4,5-2H, 34S] isotopologue. While the extended time for reflux and replenishing the deuterium source did increase the amount of deuterium incorporation, this method is not sufficient for obtaining a sample that has only the tetra-deuterio isotopologue present.

SCHEME 1.

Synthesis of deuterium-containing isotopologues of thiophene.

SCHEME 1.

Synthesis of deuterium-containing isotopologues of thiophene.

Close modal

The deuterium–hydrogen exchange reactions proceed via deuteriation/deprotonation at each carbon atom in the ring [Scheme 1(a)]. The preference for D/H exchange at C2 over C3 is consistent with the relative energies of the thiolium cation intermediates (Fig. 2). The 9.1 kcal/mol energy difference [B3LYP/6-311G+(2d,p)+ZPVE] is rationalized by delocalization of positive charge over more atoms via π conjugation when H/D+ is attached to C2, as shown in the accompanying resonance structures. A similar stabilization is not afforded when H/D+ is bonded to C3. This interpretation is drawn from the highest-contributing resonance structures from the natural resonance theory analysis and the natural population analysis charges of each thiolium ion, as displayed in Fig. 2. The differential rate of exchange leads to the dominance of [2-2H]-, [2,5-2H]-, and [2,3,5-2H]-thiophene in the rotational spectrum of the deuterium-enriched sample (after five days reflux), while the lowest-abundance thiophene-dx species in the spectrum (excluding heavy-atom sulfur or carbon isotopologues) is [3,4-2H]-thiophene.

FIG. 2.

2H-thiolium and 3H-thiolium with their relative energies [B3LYP/6-311G+(2d,p)+ZPVE], the natural population analysis charges as spheres whose size corresponds to the magnitude of the local charge (blue for positive and red for negative), and relevant resonance structures from the natural resonance theory analysis.

FIG. 2.

2H-thiolium and 3H-thiolium with their relative energies [B3LYP/6-311G+(2d,p)+ZPVE], the natural population analysis charges as spheres whose size corresponds to the magnitude of the local charge (blue for positive and red for negative), and relevant resonance structures from the natural resonance theory analysis.

Close modal

An alternate synthetic route was adapted to generate [3-2H]-thiophene55 because that isotopologue cannot be prepared in high abundance using acid-catalyzed H/D exchange. A sample of [3-2H]-thiophene was generated from 3-bromothiophene by lithium–halogen exchange, followed by quenching with D2O [Scheme 1(b)]. The resultant sample was primarily [3-2H]-thiophene, but the reaction did contain some [2-2H]-thiophene, along with other combinations of di- and tri-deuterio isotopologues (although in substantially smaller amounts than generated by acid-catalyzed H/D exchange). The rearranged and poly-deuteriated thiophenes presumably result from base-catalyzed H/D exchange in the strongly basic conditions. The reaction described in Scheme 1(b) allowed for the assignment of more transitions for the [3-2H] isotopologue and permitted the observation of sulfur and carbon heavy-atom isotopologues of [3-2H]-thiophene. Synthetic details and relevant NMR and mass spectra are included in the supplementary material.

The rotational spectrum of the ground vibrational state of the normal isotopologue of thiophene has been greatly expanded from previous works (5–40 GHz)24,31–34 to include 40–360 GHz, along with some additional transitions between 12 and 18 GHz. The spectrum of thiophene, which includes the normal isotopologue and four heavy-atom isotopologues at natural abundance, is shown in Fig. 3. The distinct bands in the spectrum are due to aR0,1 transitions that are degenerate with respect to Kc and decrease in J as they increase in Ka progressing toward higher frequency. As Ka continues to increase, these transitions lose degeneracy near Ka = 10 and eventually become degenerate with respect to Ka around Ka = 20. With the inclusion of transitions previously reported,31,32,34 the dataset contains 3270 transitions with a J″ range from 1 to 93 and Ka″ range from 0 to 38; this is depicted in the data distribution plot provided in the supplementary material. Least-squares fitting of this large dataset requires a full sextic, distorted-rotor Hamiltonian (A and S reductions and Ir and IIIr representations all employed) to obtain a low-error fit (σ = 0.022 MHz) with physically meaningful spectroscopic constants. The experimental κ value of −0.0917 indicates the highly asymmetric, barely prolate nature of thiophene and suggests the Ir representation to be somewhat more appropriate than IIIr. The IIIr representation, which is more appropriate to oblate asymmetric tops, has commonly been used in previous studies of thiophene. To allow for comparison with previous work, the A-reduced, Ir and IIIr spectroscopic constants from this work are presented in Table I along with computational values and previously determined values from high-resolution IR studies.18,20 The computed and experimental spectroscopic constants display excellent agreement. Compared to the experimentally determined spectroscopic constants (A-reduced, Ir representation), the computed rotational constants [CCSD(T)/cc-pCVTZ] are within 0.8%, the quartic distortion constants are within 2%, and the sextic constants are within 10%. This agreement provides excellent indication that the experimental constants (A reduction and Ir representation) are physically meaningful. Constants from the S-reduced Hamiltonian in the Ir representation are presented in Table II, and constants in the IIIr representation least-squares fit are presented in Table SI. With the exception of HK in the S reduction, Ir representation, all quartic and sextic constants were satisfactorily determined in both representations and in both reductions.

FIG. 3.

Experimental rotational spectrum of thiophene (below) and predicted stick spectra (above) for the vibrational ground states (G.S.) of the normal (purple), [34S] (green), [2-13C] (pink), [3-13C] (blue), and [33S] (red) isotopologues of thiophene from 184 to 190 GHz. The J′ = 29, Ka′ = 0+, 1 degenerate transition for each heavy-atom isotopologue is denoted with a diamond marker in the respective color. Major transitions for the normal isotopologue are labeled with the J′ value of the upper energy-level quantum number.

FIG. 3.

Experimental rotational spectrum of thiophene (below) and predicted stick spectra (above) for the vibrational ground states (G.S.) of the normal (purple), [34S] (green), [2-13C] (pink), [3-13C] (blue), and [33S] (red) isotopologues of thiophene from 184 to 190 GHz. The J′ = 29, Ka′ = 0+, 1 degenerate transition for each heavy-atom isotopologue is denoted with a diamond marker in the respective color. Major transitions for the normal isotopologue are labeled with the J′ value of the upper energy-level quantum number.

Close modal
TABLE I.

Computed and experimental spectroscopic constants for the vibrational ground state of the normal isotopologue of thiophene (A-reduced Hamiltonian, Ir and IIIr representations).

ExperimentalExperimental
CCSD(T)/cc-pCVTZRotationalIR20,aCCSD(T)/cc-pCVTZRotationalIR18,a
RepresentationIrIrIrIIIrIIIrIIIr
A0(A) (MHz) 7999 8 041.594 988  (44) 8 041.643  (13) 7 999 8 041.594 596  (44) 8 041.595 67  (25) 
B0(A) (MHz) 5376 5 418.264 739  (36) 5 418.201 5  (33) 5 376 5 418.265 640  (36) 5 418.265 78  (11) 
C0(A) (MHz) 3213 3 235.779 214  (39) 3 235.776 3  (36) 3 213 3 235.778 713  (39) 3 235.778 71  (10) 
ΔJ  (kHz) 0.823 0.837 865  (26) 0.830  (24) 2.155 2.176 349  (46) 2.178 2  (14) 
ΔJK  (kHz) −0.269 −0.272 860  (41) −0.25  (11) −4.263 −4.288 32  (15) −4.299  (54) 
ΔK  (kHz) 2.32 2.326 48  (10) 2.32  (10) 2.320 2.326 54  (11) 2.337 2  (42) 
δJ  (kHz) 0.306 0.311 642 9  (36) 0.307  (12) 0.360 0.357 595  (20) 0.359 42  (69) 
δK  (kHz) 0.901 0.917 685  (27) 0.909  (81) −1.372 −1.367 59  (11) −1.376 6  (45) 
ΦJ  (Hz) 0.000 294 0.000 299 0  (53)  0.001 01 0.000 967  (41)  
ΦJK  (Hz) −0.000 984 −0.000 951  (14)  −0.005 85 −0.005 59  (30)  
ΦKJ  (Hz) −0.001 33 −0.001 477  (44)  0.007 73 0.007 30  (54)  
ΦK  (Hz) 0.003 45 0.003 42  (11)  −0.002 89 −0.002 68  (28)  
ϕJ  (Hz) 0.000 151 0.000 153 71  (80)  0.000 208 0.000 180  (20)  
ϕJK  (Hz) −0.000 093 7 −0.000 085 9  (99)  −0.003 36 −0.003 20  (17)  
ϕK  (Hz) 0.003 11 0.003 184  (21)  0.001 19 0.001 00  (23)  
Nlines MW  3 270b  3 270b 25 
Nlines IR  3 971c  10 725c 
σ  (MHz)  0.022   0.022  
κd −0.096 5 −0.091 7 −0.091 8 −0.096 5 −0.091 7 −0.091 7 
Δi  (μÅ2)e 0.076 4 0.065 799 1  (20) 0.065 23  (21) 0.076 4 0.065 835 7  (20) 0.065 846 5  (56) 
ExperimentalExperimental
CCSD(T)/cc-pCVTZRotationalIR20,aCCSD(T)/cc-pCVTZRotationalIR18,a
RepresentationIrIrIrIIIrIIIrIIIr
A0(A) (MHz) 7999 8 041.594 988  (44) 8 041.643  (13) 7 999 8 041.594 596  (44) 8 041.595 67  (25) 
B0(A) (MHz) 5376 5 418.264 739  (36) 5 418.201 5  (33) 5 376 5 418.265 640  (36) 5 418.265 78  (11) 
C0(A) (MHz) 3213 3 235.779 214  (39) 3 235.776 3  (36) 3 213 3 235.778 713  (39) 3 235.778 71  (10) 
ΔJ  (kHz) 0.823 0.837 865  (26) 0.830  (24) 2.155 2.176 349  (46) 2.178 2  (14) 
ΔJK  (kHz) −0.269 −0.272 860  (41) −0.25  (11) −4.263 −4.288 32  (15) −4.299  (54) 
ΔK  (kHz) 2.32 2.326 48  (10) 2.32  (10) 2.320 2.326 54  (11) 2.337 2  (42) 
δJ  (kHz) 0.306 0.311 642 9  (36) 0.307  (12) 0.360 0.357 595  (20) 0.359 42  (69) 
δK  (kHz) 0.901 0.917 685  (27) 0.909  (81) −1.372 −1.367 59  (11) −1.376 6  (45) 
ΦJ  (Hz) 0.000 294 0.000 299 0  (53)  0.001 01 0.000 967  (41)  
ΦJK  (Hz) −0.000 984 −0.000 951  (14)  −0.005 85 −0.005 59  (30)  
ΦKJ  (Hz) −0.001 33 −0.001 477  (44)  0.007 73 0.007 30  (54)  
ΦK  (Hz) 0.003 45 0.003 42  (11)  −0.002 89 −0.002 68  (28)  
ϕJ  (Hz) 0.000 151 0.000 153 71  (80)  0.000 208 0.000 180  (20)  
ϕJK  (Hz) −0.000 093 7 −0.000 085 9  (99)  −0.003 36 −0.003 20  (17)  
ϕK  (Hz) 0.003 11 0.003 184  (21)  0.001 19 0.001 00  (23)  
Nlines MW  3 270b  3 270b 25 
Nlines IR  3 971c  10 725c 
σ  (MHz)  0.022   0.022  
κd −0.096 5 −0.091 7 −0.091 8 −0.096 5 −0.091 7 −0.091 7 
Δi  (μÅ2)e 0.076 4 0.065 799 1  (20) 0.065 23  (21) 0.076 4 0.065 835 7  (20) 0.065 846 5  (56) 
a

Converted from cm−1.

b

Number of independent frequencies in the fit, including transitions from previous works.31,32,34

c

Total number of transitions in the fit.

d

κ =  (2BAC)/(AC), experimental values calculated using PLAN.

e

Δi = IcIbIa, experimental values calculated using PLAN.

TABLE II.

Spectroscopic constants for isotopologues of thiophene  (S-reduced Hamiltonian, Ir representation).a

IsotopologueC4H4Sb[2-13C]b[3-13C]b[34S]b[33S]b[2-2H]b
A0(S) (MHz) 8 041.595 658(44) 7 852.775 54(31) 7 981.280 38(34) 8 041.715 07(20) 8 041.651 5(20) 7 437.197 29(20) 
B0(S) (MHz) 5 418.262 629(36) 5 418.405 62(10) 5 319.305 933(98) 5 274.184 579(69) 5 344.297 61(59) 5 413.721 571(84) 
C0(S) (MHz) 3 235.780 781  (39) 3 204.806 550(87) 3 190.618 898(88) 3 183.843 198(67) 3 209.258 34(13) 3 131.815 069(83) 
DJ  (kHz) 0.703 074(26) 0.699 151(61) 0.675 952(59) 0.680 947(46) 0.691 62(14) 0.681 599(56) 
DJK  (kHz) 0.535 835(27) 0.506 44(37) 0.551 34(32) 0.510 05(19) 0.521 62(77) 0.444 81(26) 
DK  (kHz) 1.652 637(67) 1.583 22(56) 1.611 09(65) 1.699 58(45) 1.665 9(33) 1.269 81(35) 
d1  (kHz) −0.3116416(36) −0.313 237(19) −0.298 436(19) −0.297 537(19) −0.304 257(86) −0.313 542(24) 
d2  (kHz) −0.067 394 2(18) −0.068 193(11) −0.064 8635(97) −0.062 968 7(79) −0.065 028(28) −0.069 745 1(78) 
HJ  (Hz) 0.000 212 5(54) 0.000 218(14) 0.000 203(14) 0.000 197(12) [0.000 212] 0.000 225(17) 
HJK  (Hz) −0.001668(10) −0.001 54(18) −0.001 48(15) [–0.001 66] [–0.001 69] −0.001 82(18) 
HKJ  (Hz) 0.002 158(32) 0.003 03(51) 0.001 79(36) 0.002 09(20) [0.002 18] 0.00247(37) 
HK  (Hz) [0.000 672] [0.000 597] [0.000 672] [0.000 759] [0.000 716] [0.000 387] 
h1  (Hz) 0.000 131 05(73) [0.000 128] [0.000 121] 0.000 122 0(61) [0.000 126] 0.000 122 4(73) 
h2  (Hz) 0.000 043 05(56) [0.000 0360] [0.000 038 6] 0.000 041 4(25) [0.000 036 7] 0.000 032 9(50) 
h3  (Hz) 0.000 022 52(14) [0.000 0221] [0.000 020 3] 0.000 021 08(86) [0.000 020 5] 0.000 021 9(10) 
Nlinesc 3 270 965 983 1262 258 1350 
σ  (MHz) 0.022 0.030 0.029 0.024 0.029 0.028 
κd −0.917 −0.047 5 −0.111 −0.139 −0.116 0.060 0 
Δi  (μÅ2)e 0.065 692 3(20) 0.066 543 0(53) 0.066 298 4(55) 0.066 441 0(39) 0.065 992(20) 0.064 984 2(49) 
IsotopologueC4H4Sb[2-13C]b[3-13C]b[34S]b[33S]b[2-2H]b
A0(S) (MHz) 8 041.595 658(44) 7 852.775 54(31) 7 981.280 38(34) 8 041.715 07(20) 8 041.651 5(20) 7 437.197 29(20) 
B0(S) (MHz) 5 418.262 629(36) 5 418.405 62(10) 5 319.305 933(98) 5 274.184 579(69) 5 344.297 61(59) 5 413.721 571(84) 
C0(S) (MHz) 3 235.780 781  (39) 3 204.806 550(87) 3 190.618 898(88) 3 183.843 198(67) 3 209.258 34(13) 3 131.815 069(83) 
DJ  (kHz) 0.703 074(26) 0.699 151(61) 0.675 952(59) 0.680 947(46) 0.691 62(14) 0.681 599(56) 
DJK  (kHz) 0.535 835(27) 0.506 44(37) 0.551 34(32) 0.510 05(19) 0.521 62(77) 0.444 81(26) 
DK  (kHz) 1.652 637(67) 1.583 22(56) 1.611 09(65) 1.699 58(45) 1.665 9(33) 1.269 81(35) 
d1  (kHz) −0.3116416(36) −0.313 237(19) −0.298 436(19) −0.297 537(19) −0.304 257(86) −0.313 542(24) 
d2  (kHz) −0.067 394 2(18) −0.068 193(11) −0.064 8635(97) −0.062 968 7(79) −0.065 028(28) −0.069 745 1(78) 
HJ  (Hz) 0.000 212 5(54) 0.000 218(14) 0.000 203(14) 0.000 197(12) [0.000 212] 0.000 225(17) 
HJK  (Hz) −0.001668(10) −0.001 54(18) −0.001 48(15) [–0.001 66] [–0.001 69] −0.001 82(18) 
HKJ  (Hz) 0.002 158(32) 0.003 03(51) 0.001 79(36) 0.002 09(20) [0.002 18] 0.00247(37) 
HK  (Hz) [0.000 672] [0.000 597] [0.000 672] [0.000 759] [0.000 716] [0.000 387] 
h1  (Hz) 0.000 131 05(73) [0.000 128] [0.000 121] 0.000 122 0(61) [0.000 126] 0.000 122 4(73) 
h2  (Hz) 0.000 043 05(56) [0.000 0360] [0.000 038 6] 0.000 041 4(25) [0.000 036 7] 0.000 032 9(50) 
h3  (Hz) 0.000 022 52(14) [0.000 0221] [0.000 020 3] 0.000 021 08(86) [0.000 020 5] 0.000 021 9(10) 
Nlinesc 3 270 965 983 1262 258 1350 
σ  (MHz) 0.022 0.030 0.029 0.024 0.029 0.028 
κd −0.917 −0.047 5 −0.111 −0.139 −0.116 0.060 0 
Δi  (μÅ2)e 0.065 692 3(20) 0.066 543 0(53) 0.066 298 4(55) 0.066 441 0(39) 0.065 992(20) 0.064 984 2(49) 
Isotopologue[3-2H]b[2,3-2H][2,4-2H][2,5-2H][3,4-2H][2,3,4-2H]
A0(S) (MHz) 7 855.997 58(11) 7 277.001 30(27) 7 288.383 17(21) 6 903.426 58(12) 7 616.557(16) 7 072.276 05(33) 
B0(S) (MHz) 5 138.229 854(63) 5 137.627 501(97) 5 124.657 587(77) 5 410.698 544  (68) 4 914.679 4  (78) 4 909.469 19  (10) 
C0(S) (MHz) 3 105.222 733  (72) 3 010.350 104  (87) 3 007.831 223  (83) 3 032.130 273  (70) 2 986.054 60  (18) 2 896.801 160  (94) 
DJ  (kHz) 0.606 648  (43) 0.592 435  (59) 0.578 844  (46) 0.666 346  (46) 0.537 95  (23) 0.520 247  (60) 
DJK  (kHz) 0.567 38  (10) 0.457 48  (34) 0.538 407  (90) 0.326 19  (15) [0.531] 0.469 51  (35) 
DK  (kHz) 1.524 38  (13) 1.178 63  (53) 1.142 75  (32) 1.001 64  (15) [1.40] 1.075 91  (53) 
d1  (kHz) −0.265 109  (10) −0.268 999  (28) −0.262 829  (14) −0.316 194  (18) −0.233 02  (18) −0.234 458  (26) 
d2  (kHz) −0.058 206 4  (36) −0.060 220  (10) −0.060 718 8  (32) −0.070 902 5  (42) −0.050 945  (68) −0.053 293 1  (94) 
HJ  (Hz) 0.000 146 5  (92) 0.000 142  (21) 0.000 120 9  (96) 0.000 236  (10) [0.000 123] 0.000 123  (19) 
HJK  (Hz) −0.001 063  (43) −0.001 10  (18) [–0.000 752] −0.001 619  (44) [–0.000 972] −0.000 80  (11) 
HKJ  (Hz) 0.001 17  (10) 0.001 43  (38) [0.000 762] 0.002 274  (91) [0.001 29] 0.001 23  (28) 
HK  (Hz) [0.000 920] [0.000 530] [0.000 791] [0.000 116] [0.000 696] [0.000 472] 
h1  (Hz) 0.0000964  (20) 0.000 084  (10) [0.000 087 8] 0.000 122 2  (46) [0.000 079 4] 0.000 082 1  (97) 
h2  (Hz) 0.000 038 5  (12) 0.000 030 7  (52) [0.000 040 1] [0.000 030 9] [0.000 029 3] [0.000 029 2] 
h3  (Hz) 0.000 016 76  (26) 0.000 018 1  (12) [0.000 016 8] 0.000 025 05  (58) [0.000 013 6] 0.000 015 9  (14) 
Nlinesc 1 880 1 187 1 171 1 651 203 1 049 
σ  (MHz) 0.029 0.030 0.030 0.027 0.038 0.032 
κd −0.144 1 −0.002 8 −0.011 0 0.228 8 −0.167 0 −0.036 0 
Δi  (μÅ2)e 0.064 312 3  (41) 0.063 507 3  (58) 0.063 593 3  (53) 0.063 937 3  (43) 0.063 22  (22) 0.062 244 6  (70) 
Isotopologue[3-2H]b[2,3-2H][2,4-2H][2,5-2H][3,4-2H][2,3,4-2H]
A0(S) (MHz) 7 855.997 58(11) 7 277.001 30(27) 7 288.383 17(21) 6 903.426 58(12) 7 616.557(16) 7 072.276 05(33) 
B0(S) (MHz) 5 138.229 854(63) 5 137.627 501(97) 5 124.657 587(77) 5 410.698 544  (68) 4 914.679 4  (78) 4 909.469 19  (10) 
C0(S) (MHz) 3 105.222 733  (72) 3 010.350 104  (87) 3 007.831 223  (83) 3 032.130 273  (70) 2 986.054 60  (18) 2 896.801 160  (94) 
DJ  (kHz) 0.606 648  (43) 0.592 435  (59) 0.578 844  (46) 0.666 346  (46) 0.537 95  (23) 0.520 247  (60) 
DJK  (kHz) 0.567 38  (10) 0.457 48  (34) 0.538 407  (90) 0.326 19  (15) [0.531] 0.469 51  (35) 
DK  (kHz) 1.524 38  (13) 1.178 63  (53) 1.142 75  (32) 1.001 64  (15) [1.40] 1.075 91  (53) 
d1  (kHz) −0.265 109  (10) −0.268 999  (28) −0.262 829  (14) −0.316 194  (18) −0.233 02  (18) −0.234 458  (26) 
d2  (kHz) −0.058 206 4  (36) −0.060 220  (10) −0.060 718 8  (32) −0.070 902 5  (42) −0.050 945  (68) −0.053 293 1  (94) 
HJ  (Hz) 0.000 146 5  (92) 0.000 142  (21) 0.000 120 9  (96) 0.000 236  (10) [0.000 123] 0.000 123  (19) 
HJK  (Hz) −0.001 063  (43) −0.001 10  (18) [–0.000 752] −0.001 619  (44) [–0.000 972] −0.000 80  (11) 
HKJ  (Hz) 0.001 17  (10) 0.001 43  (38) [0.000 762] 0.002 274  (91) [0.001 29] 0.001 23  (28) 
HK  (Hz) [0.000 920] [0.000 530] [0.000 791] [0.000 116] [0.000 696] [0.000 472] 
h1  (Hz) 0.0000964  (20) 0.000 084  (10) [0.000 087 8] 0.000 122 2  (46) [0.000 079 4] 0.000 082 1  (97) 
h2  (Hz) 0.000 038 5  (12) 0.000 030 7  (52) [0.000 040 1] [0.000 030 9] [0.000 029 3] [0.000 029 2] 
h3  (Hz) 0.000 016 76  (26) 0.000 018 1  (12) [0.000 016 8] 0.000 025 05  (58) [0.000 013 6] 0.000 015 9  (14) 
Nlinesc 1 880 1 187 1 171 1 651 203 1 049 
σ  (MHz) 0.029 0.030 0.030 0.027 0.038 0.032 
κd −0.144 1 −0.002 8 −0.011 0 0.228 8 −0.167 0 −0.036 0 
Δi  (μÅ2)e 0.064 312 3  (41) 0.063 507 3  (58) 0.063 593 3  (53) 0.063 937 3  (43) 0.063 22  (22) 0.062 244 6  (70) 
Isotopologue[2,3,5-2H][2,3,4,5-2H][2,5-2H, 34S][2,3,5-2H, 34S][2,3,4,5-2H, 34S]f[2,5-2H, 2-13C]
A0(S) (MHz) 6 775.849 57 (12) 6 587.731 79 (20) 6 903.535 0 (11) 6 773.399 56 (92) 6 588.36 (32) 6 763.947 (25) 
B0(S) (MHz) 5 124.449 058 (64) 4 905.808 107 (85) 5 268.343 08 (37) 4 992.253 90 (32) 4 777.72 (18) 5 410.781 (17) 
C0(S) (MHz) 2 916.731 610 (66) 2 810.897 843 (77) 2 986.906 70 (30) 2 872.969 11 (23) 2 768.492 1 (18) 3 004.929 39 (26) 
DJ (kHz) 0.567 721 (40) 0.507 404 (48) 0.645 38 (15) 0.552 89 (13) 0.487 0 (65) 0.667 44 (43) 
DJK (kHz) 0.418 49 (19) 0.377 71 (25) 0.317 68 (78) 0.376 2 (24) [0.348] [0.271] 
DK (kHz) 0.888 63 (18) 0.843 81 (29) 1.035 4 (14) 0.964 8 (52) [0.882] [0.996] 
d1 (kHz) −0.266 630 (16) −0.236 303 (23) −0.302 494 (66) −0.255 757 (61) −0.222 5 (45) −0.318 45 (33) 
d2 (kHz) −0.062 119 2 (50) −0.054 507 4 (35) −0.066 729 (35) −0.057 659 (83) −0.050 3 (12) −0.070 65 (11) 
HJ (Hz) 0.000 151 (12) 0.000 144 (17) 0.000 237 (30) 0.000 111 (16) [0.000 116] [0.000 229] 
HJK (Hz) −0.000 862 (70) −0.000 906 (94) −0.001 27 (36) [–0.000 792] [–0.000 780] [–0.001 54] 
HKJ (Hz) [0.000 857] [0.001 05] [0.001 85] [0.000 895] [0.001 01] [0.002 03] 
HK (Hz) [0.000 474] [0.000 270] [0.000 173] [0.000 473] [0.000 301] [0.000 068 2] 
h1 (Hz) 0.000 093 6 (52) 0.000 080 2 (86) [0.000 116] [0.000 084 3] [0.000 071 7] [0.000 121] 
h2 (Hz) 0.000 037 9 (16) [0.000 027 0] [0.000 029 2] [0.000 032 8] [0.000 024 9] [0.000 027 3] 
h3 (Hz) 0.000 017 90 (55) 0.000 015 52 (66) [0.000 021 0] [0.000 015 8] [0.000 013 1] [0.000 023 6] 
Nlinesc 1672 1 349 420 458 39 165 
σ (MHz) 0.027 0.031 0.042 0.039 0.039 0.044 
κd 0.144 2 0.109 3 0.165 0 0.086 7 0.052 0 0.280 0 
Δi (μÅ2)e 0.062 470 0 (44) 0.061 092 5 (58) 0.064 788 (22) 0.063 317 (19) 0.060 8 (56) 0.064 52 (41) 
Isotopologue[2,3,5-2H][2,3,4,5-2H][2,5-2H, 34S][2,3,5-2H, 34S][2,3,4,5-2H, 34S]f[2,5-2H, 2-13C]
A0(S) (MHz) 6 775.849 57 (12) 6 587.731 79 (20) 6 903.535 0 (11) 6 773.399 56 (92) 6 588.36 (32) 6 763.947 (25) 
B0(S) (MHz) 5 124.449 058 (64) 4 905.808 107 (85) 5 268.343 08 (37) 4 992.253 90 (32) 4 777.72 (18) 5 410.781 (17) 
C0(S) (MHz) 2 916.731 610 (66) 2 810.897 843 (77) 2 986.906 70 (30) 2 872.969 11 (23) 2 768.492 1 (18) 3 004.929 39 (26) 
DJ (kHz) 0.567 721 (40) 0.507 404 (48) 0.645 38 (15) 0.552 89 (13) 0.487 0 (65) 0.667 44 (43) 
DJK (kHz) 0.418 49 (19) 0.377 71 (25) 0.317 68 (78) 0.376 2 (24) [0.348] [0.271] 
DK (kHz) 0.888 63 (18) 0.843 81 (29) 1.035 4 (14) 0.964 8 (52) [0.882] [0.996] 
d1 (kHz) −0.266 630 (16) −0.236 303 (23) −0.302 494 (66) −0.255 757 (61) −0.222 5 (45) −0.318 45 (33) 
d2 (kHz) −0.062 119 2 (50) −0.054 507 4 (35) −0.066 729 (35) −0.057 659 (83) −0.050 3 (12) −0.070 65 (11) 
HJ (Hz) 0.000 151 (12) 0.000 144 (17) 0.000 237 (30) 0.000 111 (16) [0.000 116] [0.000 229] 
HJK (Hz) −0.000 862 (70) −0.000 906 (94) −0.001 27 (36) [–0.000 792] [–0.000 780] [–0.001 54] 
HKJ (Hz) [0.000 857] [0.001 05] [0.001 85] [0.000 895] [0.001 01] [0.002 03] 
HK (Hz) [0.000 474] [0.000 270] [0.000 173] [0.000 473] [0.000 301] [0.000 068 2] 
h1 (Hz) 0.000 093 6 (52) 0.000 080 2 (86) [0.000 116] [0.000 084 3] [0.000 071 7] [0.000 121] 
h2 (Hz) 0.000 037 9 (16) [0.000 027 0] [0.000 029 2] [0.000 032 8] [0.000 024 9] [0.000 027 3] 
h3 (Hz) 0.000 017 90 (55) 0.000 015 52 (66) [0.000 021 0] [0.000 015 8] [0.000 013 1] [0.000 023 6] 
Nlinesc 1672 1 349 420 458 39 165 
σ (MHz) 0.027 0.031 0.042 0.039 0.039 0.044 
κd 0.144 2 0.109 3 0.165 0 0.086 7 0.052 0 0.280 0 
Δi (μÅ2)e 0.062 470 0 (44) 0.061 092 5 (58) 0.064 788 (22) 0.063 317 (19) 0.060 8 (56) 0.064 52 (41) 
Isotopologue[2,5-2H, 3-13C][2-2H, 34S][3-2H, 2-13C][3-2H, 3-13C][3-2H, 4-13C][3-2H, 5-13C]
A0(S) (MHz) 6 860.081 (23) 7 436.863 (16) 7 681.747 (50) 7 816.981 (61) 7 775.956 (56) 7 671.947 (41) 
B0(S) (MHz) 5 310.447 (15) 5 270.700 0 (92) 5 137.725 (24) 5 045.949 (27) 5 060.889 (25) 5 138.103 (19) 
C0(S) (MHz) 2 992.158 23 (26) 3 083.341 37 (19) 3 077.431 02 (28) 3 065.287 40(28) 3 064.440 94 (27) 3 075.993 25 (24) 
DJ (kHz) 0.641 97 (37) 0.663 89 (23) 0.605 49 (44) 0.585 84(48) 0.588 84 (51) 0.602 06 (37) 
DJK (kHz) [0.329] [0.404] [0.520] [0.563] [0.552] [0.534] 
DK (kHz) [0.989] [1.33] [1.47] [1.51] [1.49] [1.46] 
d1 (kHz) −0.303 29 (28) −0.301 28 (18) −0.267 33 (34) −0.254 28 (37) −0.256 68 (39) −0.265 54 (28) 
d2 (kHz) −0.067 76 (10) −0.065 200 (70) −0.058 59 (13) −0.055 59 (14) −0.056 13 (14) −0.058 44 (11) 
HJ (Hz) [0.000 200] [0.000 203] [0.000 151] [0.000 134] [0.000 144] [0.000 147] 
HJK (Hz) [–0.001 31] [–0.001 48] [–0.001 14] [–0.000 949] [–0.001 09] [–0.001 08] 
HKJ (Hz) [0.001 71] [0.001 89] [0.001 39] [0.001 05] [0.001 39] [0.001 24] 
HK (Hz) [0.000 166] [0.000 450] [0.000 827] [0.000 979] [0.000 771] [0.000 901] 
h1 (Hz) [0.000 114] [0.000 119] [0.000 095 9] [0.000 090 4] [0.000 0931] [0.000 095 3] 
h2 (Hz) [0.000 032 9] [0.000 034 0] [0.000 034 6] [0.000 036 8] [0.000 0346] [0.000 036 0] 
h3 (Hz) [0.000 021 6] [0.000 020 3] [0.000 016 9] [0.000 015 5] [0.000 0159] [0.000 016 8] 
Nlinesc 174 237 133 112 113 143 
σ (MHz) 0.045 0.039 0.046 0.041 0.041 0.040 
κd 0.198 7 0.004 9 −0.105 1 −0.166 3 −0.152 5 −0.102 6 
Δi (μÅ2)e 0.064 70 (38) 0.065 73 (23) 0.065 19 (64) 0.064 83 (75) 0.064 95 (69) 0.065 15 (52) 
Isotopologue[2,5-2H, 3-13C][2-2H, 34S][3-2H, 2-13C][3-2H, 3-13C][3-2H, 4-13C][3-2H, 5-13C]
A0(S) (MHz) 6 860.081 (23) 7 436.863 (16) 7 681.747 (50) 7 816.981 (61) 7 775.956 (56) 7 671.947 (41) 
B0(S) (MHz) 5 310.447 (15) 5 270.700 0 (92) 5 137.725 (24) 5 045.949 (27) 5 060.889 (25) 5 138.103 (19) 
C0(S) (MHz) 2 992.158 23 (26) 3 083.341 37 (19) 3 077.431 02 (28) 3 065.287 40(28) 3 064.440 94 (27) 3 075.993 25 (24) 
DJ (kHz) 0.641 97 (37) 0.663 89 (23) 0.605 49 (44) 0.585 84(48) 0.588 84 (51) 0.602 06 (37) 
DJK (kHz) [0.329] [0.404] [0.520] [0.563] [0.552] [0.534] 
DK (kHz) [0.989] [1.33] [1.47] [1.51] [1.49] [1.46] 
d1 (kHz) −0.303 29 (28) −0.301 28 (18) −0.267 33 (34) −0.254 28 (37) −0.256 68 (39) −0.265 54 (28) 
d2 (kHz) −0.067 76 (10) −0.065 200 (70) −0.058 59 (13) −0.055 59 (14) −0.056 13 (14) −0.058 44 (11) 
HJ (Hz) [0.000 200] [0.000 203] [0.000 151] [0.000 134] [0.000 144] [0.000 147] 
HJK (Hz) [–0.001 31] [–0.001 48] [–0.001 14] [–0.000 949] [–0.001 09] [–0.001 08] 
HKJ (Hz) [0.001 71] [0.001 89] [0.001 39] [0.001 05] [0.001 39] [0.001 24] 
HK (Hz) [0.000 166] [0.000 450] [0.000 827] [0.000 979] [0.000 771] [0.000 901] 
h1 (Hz) [0.000 114] [0.000 119] [0.000 095 9] [0.000 090 4] [0.000 0931] [0.000 095 3] 
h2 (Hz) [0.000 032 9] [0.000 034 0] [0.000 034 6] [0.000 036 8] [0.000 0346] [0.000 036 0] 
h3 (Hz) [0.000 021 6] [0.000 020 3] [0.000 016 9] [0.000 015 5] [0.000 0159] [0.000 016 8] 
Nlinesc 174 237 133 112 113 143 
σ (MHz) 0.045 0.039 0.046 0.041 0.041 0.040 
κd 0.198 7 0.004 9 −0.105 1 −0.166 3 −0.152 5 −0.102 6 
Δi (μÅ2)e 0.064 70 (38) 0.065 73 (23) 0.065 19 (64) 0.064 83 (75) 0.064 95 (69) 0.065 15 (52) 
Isotopologue[3-2H, 34S][3-2H, 33S]f
A0(S) (MHz) 7 854.541 26 (65) 7 854.84 (47)     
B0(S) (MHz) 5 003.229 49 (16) 5 069.12 (20)     
C0(S) (MHz) 3 055.165 94 (14) 3079.662 92 (44)     
DJ (kHz) 0.588 513 (76) 0.595 8 (15)     
DJK (kHz) 0.537 56 (46) [0.534]     
DK (kHz) 1.570 5 (12) [1.56]     
d1 (kHz) −0.253 387 (27) −0.257 1 (11)     
d2 (kHz) −0.054 331 (10) −0.054 93 (42)     
HJ (Hz) 0.000 157 (17) [0.000 146]     
HJK (Hz) −0.001 03 (16) [–0.001 103]     
HKJ (Hz) [0.001 26] [0.001 28]     
HK (Hz) [0.000 964] [0.000 942]     
h1 (Hz) [0.000 092 2] [0.000 094 3]     
h2 (Hz) [0.000 033 0] [0.000 034 5]     
h3 (Hz) [0.000 015 0] [0.000 015 7]     
Nlinesc 664 57     
σ (MHz) 0.035 0.045     
κd −0.188 2 −0.166 7     
Δi (μÅ2)e 0.065 030 5 (99) 0.064 8 (56)     
Isotopologue[3-2H, 34S][3-2H, 33S]f
A0(S) (MHz) 7 854.541 26 (65) 7 854.84 (47)     
B0(S) (MHz) 5 003.229 49 (16) 5 069.12 (20)     
C0(S) (MHz) 3 055.165 94 (14) 3079.662 92 (44)     
DJ (kHz) 0.588 513 (76) 0.595 8 (15)     
DJK (kHz) 0.537 56 (46) [0.534]     
DK (kHz) 1.570 5 (12) [1.56]     
d1 (kHz) −0.253 387 (27) −0.257 1 (11)     
d2 (kHz) −0.054 331 (10) −0.054 93 (42)     
HJ (Hz) 0.000 157 (17) [0.000 146]     
HJK (Hz) −0.001 03 (16) [–0.001 103]     
HKJ (Hz) [0.001 26] [0.001 28]     
HK (Hz) [0.000 964] [0.000 942]     
h1 (Hz) [0.000 092 2] [0.000 094 3]     
h2 (Hz) [0.000 033 0] [0.000 034 5]     
h3 (Hz) [0.000 015 0] [0.000 015 7]     
Nlinesc 664 57     
σ (MHz) 0.035 0.045     
κd −0.188 2 −0.166 7     
Δi (μÅ2)e 0.065 030 5 (99) 0.064 8 (56)     
a

Values in square brackets held fixed at the CCSD(T)/cc-pCVTZ predicted value in the least-squares fit.

b

Includes previously reported transitions.24,25,31,32,34

c

Number of independent frequencies in the fit.

d

κ = (2BAC)/(AC), calculated using PLAN.

e

Δi = IcIbIa, calculated using PLAN.

f

Shaded columns indicate that the isotopologue is not included in structure determination.

Clearly visible in the spectrum at natural abundance are two sulfur isotopologues ([34S] and [33S]) and two 13C isotopologues ([2-13C] and [3-13C]) of thiophene (Fig. 3). Transitions for each of these isotopologues from 40 to 360 GHz were combined with transitions from the literature (when within two times their reported experimental uncertainty)25,34 and least-squares fit to a sextic, distorted-rotor Hamiltonian in the S reduction and Ir representation. For the 13C isotopologues (2.2% of the intensity of the normal isotopologue), over 960 distinct transitions were included in the least-squares fits. More than 1250 distinct transitions were least-squares fits for the [34S] isotopologue (4.3% natural abundance), and over 250 transitions were least-squares fits for the much less abundant [33S] isotopologue (0.75% natural abundance). No sextic distortion constants were able to be determined for the [33S] isotopologue, unlike for the other three heavy-atom isotopologues, where each has some sextic distortion constants determined. The spectroscopic constants for all rare thiophene isotopologues are presented in Table II in the S reduction and Ir representation. All isotopologues have also been fit to a sextic, distorted-rotor Hamiltonian in the A reduction and Ir representation, which are presented in the supplementary material (Table SII), along with the data distribution plots for all other isotopologues (A reduction and Ir representation). Distortion constants that were not able to be experimentally determined were held constant to the predicted values [CCSD(T)/cc-pCVTZ]. The 36S-isotopologue was sought using the rotational constants derived from the reSE structure, but not identified due to its low natural abundance (0.01%).

Previously, rotational transitions of both mono-deuterio-, one di-deuterio ([3,4-2H])-, and tetra-deuteriothiophene isotopologues were reported.24 The synthesis outlined in Scheme 1(a), after five days of reflux, resulted in a sample containing all possible mono-, di-, tri-, and tetra-deuterio isotopologues. A number of 34S and 13C variants of these deuterium-enriched isotopologues were also observed at their natural abundances. In total, 15 isotopologues of thiophene, including 11 that were previously unreported, were observed from this sample. For each isotopologue, rotational transitions were least-squares fits to a sextic, distorted-rotor Hamiltonian in the A and S reductions and the Ir representation (S reduction in Table II and A reduction in the supplementary material, Table SII). The deuterio isotopologues follow a similar spectral pattern to the normal isotopologue, with strong aR0,1 bands; a portion of the spectrum of the deuterium-containing isotopologues is displayed in Fig. 4. The band structure of thiophene is such that the spacing between bands and the transitions within the bands allows for clear visibility of each of the various isotopologues. While the [2,3,4,5-2H, 34S] species was observed in the original five-day deuterium-enriched sample, the measured transitions reported in Table II come from the sample containing primarily tetra-deuterio thiophene (14-day sample). Transitions from previous microwave work24 of the [2-2H] and [3-2H] isotopologues that agreed to within 2σ of their experimental uncertainty were included in their respective datasets (data distribution plots provided in the supplementary material).

FIG. 4.

Experimental rotational spectrum of deuterium-enriched thiophene (below) and the predicted stick spectra (above) for the vibrational ground states of thiophene isotopologues from 203 to 210 GHz.

FIG. 4.

Experimental rotational spectrum of deuterium-enriched thiophene (below) and the predicted stick spectra (above) for the vibrational ground states of thiophene isotopologues from 203 to 210 GHz.

Close modal

In the [3-2H]-enriched sample [Scheme 1(b)], [3-2H, 34S]-thiophene was the most abundant heavy-atom isotopologue, and its enhanced intensity allowed for the measurement of 664 distinct transitions. The presence of deuterium at the three-position breaks the C2v symmetry, which results in four unique mono-13C isotopologues (1.1% the intensity of the [3-2H] isotopologue). Over 100 transitions were measured and least-squares fit for each [3-2H, 13C] isotopologue. The incomplete specificity of the reaction also resulted in deuterium incorporation at the two and five positions and provided additional transitions for the [2-2H, 34S] isotopologue. Inasmuch as 33S is the least naturally abundant isotope observed, only 57 transitions for [3-2H, 33S]-thiophene were able to be included in its least-squares fit. Like with the [2,3,4,5-2H, 34S] isotopologue, the small number of transitions and relatively large error in A0 and B0 means that the spectroscopic constants of [3-2H, 33S] are not confidently determined. Therefore, neither of these isotopologues were included in the determination of the structure.

The semi-experimental equilibrium structural parameters (reSE) of thiophene were determined by least-squares fitting of the equilibrium moments of inertia. The experimental rotational constants (B0) of 24 isotopologues provide 72 moments of inertia to determine eight independent structural parameters (due to the C2v symmetry of thiophene). The B0 constants from both the A- and S-reductions (Ir representations) were converted to their determinable constants (B″) to remove effects of centrifugal distortion using Eqs. (S1)–(S6) (see the supplementary material)56 and then averaged. The very close agreement of the B″ constants (Table SIII) confirms that each isotopologue transition dataset is well treated by both the A- and S-reduced Hamiltonians, which produce physically meaningful spectroscopic constants. The averaged B″ constants from the A and S reductions were further corrected to their equilibrium rotational constants by applying the computational vibration–rotation corrections (half the sum of the vibration–rotation interaction constants, αi) and the computational electron mass corrections, as described in Eq. (1).1,30 The electron mass corrections are obtained from the diagonal elements of the electronic contribution to the rotational g-tensor, gββ, multiplied by the electron–proton mass ratio (me/MP) and the computed equilibrium rotational constant [BβCCSD(T)], where β = a, b, or c,1,30

(1)

The deviation in the experimentally determined inertial defect (Δi = IcIaIb) from the ideal inertial defect value of zero for a planar molecule is much reduced by the inclusion of these computational corrections. The effect of each of the corrections on the inertial defect is shown in Table III for each isotopologue included in the structure. Table III includes Δir0, the inertial defects from only the experimental B″ values relating to an r0 structure, ΔireSE (vib. corr. only), the inertial defects from the B″ values applying the vibration–rotation corrections only, and ΔireSE, the inertial defects calculated from the B″ values applying the vibration–rotation and electron mass corrections. The averages (x̄) of these respective inertial defects, as well as the individual values for each isotopologue, indicate that both the vibrational and electronic corrections are needed to bring Δi closer to the ideal value of zero and obtain the best possible equilibrium constants (Be). It is further clear that, including both corrections, the inertial defects are highly systematic and fairly constant. The low sample standard deviations (s) strongly indicate the high level of precision in the equilibrium moments of inertia used to calculate ΔireSE and that the remaining deviations from zero are due to a yet unidentified systematic effect. Any random errors in the rotational constants (including in the vibration–rotation corrections) larger than a few tens of kHz would cause the value of s to be greater than what is observed. The ratio of x̄/s in the last column (Δi with both corrections applied) is ∼7. It is also notable that all the shifts due to the electron mass correction are +0.010 30 or +0.010 31, even though the corresponding shifts in the individual rotational constants vary with isotopologue. The constancy in this shift is, of course, reflected in the standard deviation being the same in the two corresponding columns.

The averaged B″ values and computational corrections for each isotopologue are submitted to the xrefit module in CFOUR,46 which least-squares fits the semi-experimental equilibrium moments of inertia and determines the structural parameters. The reSE structural parameters are presented in Fig. 5(a) and in Table IV, alongside the computed structural parameters [CCSD(T)/cc-pCV5Z] and experimental structural parameters determined previously.25,27,28,30Figure 5(b) presents the number of isotopologues with substitution(s) at the designated position used in the least-squares fit of the structure from 24 isotopologues. (For example, 3 at the C2 position indicates that its substitution is present in three isotopologues: [2-13C], [2,5-2H, 2-13C], and [3-2H, 2-13C].) The structural parameters are presented graphically in Fig. 6.

FIG. 5.

(a) Semi-experimental equilibrium structure (reSE) of thiophene and (b) the number of isotopic substitutions at each position included in the structure determined from the least-squares fit of 24 isotopologues.

FIG. 5.

(a) Semi-experimental equilibrium structure (reSE) of thiophene and (b) the number of isotopic substitutions at each position included in the structure determined from the least-squares fit of 24 isotopologues.

Close modal
FIG. 6.

Graphical comparison of the thiophene structural parameters with bond distances in angstrom (Å, blue) and angles in degree (°, red). All errors shown are 2σ.

FIG. 6.

Graphical comparison of the thiophene structural parameters with bond distances in angstrom (Å, blue) and angles in degree (°, red). All errors shown are 2σ.

Close modal

To provide the best comparison to the semi-experimental equilibrium structure, the following four computational corrections to the CCSD(T)/cc-pCV5Z structure have been implemented to address residual error in the computational structure:

  1. Residual basis set effects beyond cc-pCV5Z.

  2. Residual electron correlation effects beyond the CCSD(T) treatment.

  3. Effects of scalar (mass–velocity and Darwin) relativistic effects.

  4. The diagonal Born–Oppenheimer correction (DBOC).

These four corrections are obtained in a manner similar to pyrimidine1 using Eqs. (2)(8), as described below.

  1. To estimate the correction needed to approach the infinite basis set limit, equilibrium structural parameters obtained with the cc-pCVXZ (X = T, Q, and 5) basis sets were extrapolated using the empirical exponential58 
    (2)
    where R(x) are the values of the parameters obtained using the largest three basis sets (x = 3, 4, and 5) and R(∞) is the desired basis set limit estimate. Using these three basis sets, Eq. (2) can be expressed as follows:
    (3)
    The correction to the structure due to a finite basis set is then estimated by the following equation:
    (4)
  2. Residual correlation effects are assessed by optimizing geometries at the CCSDT(Q) level59 and then estimating the correlation correction as in the following equation:
    (5)
    Due to the expense of calculations at the CCSDT(Q) level, the cc-pVDZ basis in the frozen-core approximation is used for these calculations.
  3. Relativistic corrections are obtained by subtraction of the parameters with a standard non-relativistic calculation from the equilibrium structure obtained with the X2C-1e variant of coupled-cluster theory,60–62 as in the following equation:
    (6)
  4. The diagonal Born–Oppenheimer correction (DBOC)63,64 is obtained from the following equation:
    (7)
    Here, the first value is obtained by minimizing the DBOC-corrected SCF energy with respect to nuclear positions, and the latter is again the traditional calculation.

The sum of these corrections is used to obtain the best equilibrium structural parameters, given by the following equation:

(8)

The values of each correction, ΔR(best), are applied to the CCSD(T)/cc-pCV5Z structural parameters and are presented in Table V and Fig. 6. We will refer to them as the “best theoretical estimate” (BTE) parameters.

TABLE III.

Inertial defects (Δi in μÅ2) of isotopologues of thiophene from various determinations of the moments of inertia.

IsotopologueΔir0ΔireSE (vib. corr. only)ΔireSE
Normal 0.065 61 −0.009 02 0.001 28 
[2-13C] 0.066 45 −0.009 00 0.001 30 
[3-13C] 0.066 21 −0.009 01 0.001 29 
[34S] 0.066 36 −0.008 98 0.001 32 
[33S] 0.065 91 −0.009 08 0.001 22 
[2-2H] 0.064 90 −0.009 21 0.001 09 
[3-2H] 0.064 23 −0.009 03 0.001 28 
[2,3-2H] 0.063 42 −0.009 19 0.001 12 
[2,4-2H] 0.063 51 −0.009 22 0.001 09 
[2,5-2H] 0.063 85 −0.009 38 0.000 93 
[3,4-2H] 0.063 13 −0.008 89 0.001 42 
[2,3,4-2H] 0.062 16 −0.009 17 0.001 14 
[2,3,5-2H] 0.062 38 −0.009 37 0.000 94 
[2,3,4,5-2H] 0.061 01 −0.009 33 0.000 98 
[2,5-2H, 34S] 0.064 70 −0.009 34 0.000 96 
[2,3,5-2H, 34S] 0.063 23 −0.009 30 0.001 00 
[2,5-2H, 2-13C] 0.064 43 −0.009 40 0.000 91 
[2,5-2H, 3-13C] 0.064 60 −0.009 18 0.001 13 
[2-2H, 34S] 0.065 65 −0.009 23 0.001 08 
[3-2H, 2-13C] 0.065 10 −0.008 88 0.001 43 
[3-2H, 3-13C] 0.064 76 −0.008 99 0.001 31 
[3-2H, 4-13C] 0.064 87 −0.009 00 0.001 30 
[3-2H, 5-13C] 0.065 06 −0.009 05 0.001 26 
[3-2H, 34S] 0.064 95 −0.009 00 0.001 31 
Average (x¯0.064 44 −0.009 14 0.001 17 
Std. dev. (s0.001 39 0.000 16 0.000 16 
IsotopologueΔir0ΔireSE (vib. corr. only)ΔireSE
Normal 0.065 61 −0.009 02 0.001 28 
[2-13C] 0.066 45 −0.009 00 0.001 30 
[3-13C] 0.066 21 −0.009 01 0.001 29 
[34S] 0.066 36 −0.008 98 0.001 32 
[33S] 0.065 91 −0.009 08 0.001 22 
[2-2H] 0.064 90 −0.009 21 0.001 09 
[3-2H] 0.064 23 −0.009 03 0.001 28 
[2,3-2H] 0.063 42 −0.009 19 0.001 12 
[2,4-2H] 0.063 51 −0.009 22 0.001 09 
[2,5-2H] 0.063 85 −0.009 38 0.000 93 
[3,4-2H] 0.063 13 −0.008 89 0.001 42 
[2,3,4-2H] 0.062 16 −0.009 17 0.001 14 
[2,3,5-2H] 0.062 38 −0.009 37 0.000 94 
[2,3,4,5-2H] 0.061 01 −0.009 33 0.000 98 
[2,5-2H, 34S] 0.064 70 −0.009 34 0.000 96 
[2,3,5-2H, 34S] 0.063 23 −0.009 30 0.001 00 
[2,5-2H, 2-13C] 0.064 43 −0.009 40 0.000 91 
[2,5-2H, 3-13C] 0.064 60 −0.009 18 0.001 13 
[2-2H, 34S] 0.065 65 −0.009 23 0.001 08 
[3-2H, 2-13C] 0.065 10 −0.008 88 0.001 43 
[3-2H, 3-13C] 0.064 76 −0.008 99 0.001 31 
[3-2H, 4-13C] 0.064 87 −0.009 00 0.001 30 
[3-2H, 5-13C] 0.065 06 −0.009 05 0.001 26 
[3-2H, 34S] 0.064 95 −0.009 00 0.001 31 
Average (x¯0.064 44 −0.009 14 0.001 17 
Std. dev. (s0.001 39 0.000 16 0.000 16 

In the reSE structure of thiophene, the largest computed statistical (2σ) bond distance uncertainty is in RC2–C3 (0.000 31 Å), and the largest bond angle uncertainty is in AS1–C2–H (0.028°). Exactly how reliable these error estimates are, however, is a more subtle question. Comparing current reSE to the previously published reSE structure (Table IV), which applied vibration–rotation and electron mass corrections computed using DFT methods30 to the rotational constants of eight isotopologues,25 none of the previous parameters fall within the 2σ error bars of our current reSE structure except for the RC2–H distance. For most parameters, the earlier reSE structure30 is not in close agreement with our BTE structure, either. The differences between the two reSE structures are presumably due to a combination of the incorporation of the precisely determined moments of inertia for more isotopologues and to differences in computational treatment.

The large number of isotopologues incorporated in our current studies poses some new challenges with respect to analysis and interpretation of data. Therefore, our group developed a new method to analyze the contribution and importance of each isotopologue to the reSE structure determination. A traditional substitution structure (rs) from a Kraitchman analysis26 relies on single isotopic substitution, which is sufficient to determine the structure.25 Originally, this calculation employed ground-state constants (B0), but it can also be applied to equilibrium rotational constants. The success of the Kraitchman analysis demonstrates that there is, at least, in principle, sufficient information content in the value of the rotational constants for the normal form and the singly substituted forms to locate every atom in the molecule. We have found, however, that the use of multiply substituted isotopologues provides useful additional structural information.1,38 The parameters become highly over-determined, and the experimental uncertainty can be pushed well below the value achievable with smaller datasets, i.e., single substitutions. The analysis of isotopologue incorporation was performed with an iterative analysis, where we began with the normal isotopologue and five mono-substituted isotopologues ([2-13C], [3-13C], [34S], [2-2H], and [3-2H]) as the “core set” and then added each of the remaining isotopologues, one-at-a-time, to the least-squares fit of the structure in xrefit. The value of the square root of the sum of the squared relative errors, which we call the δ (reSE), was determined for each isotopologue addition by using the following equation:

(9)

where P is each structural parameter determined by xrefit and σp is the respective (1σ) error of each parameter. The isotopologue that results in the lowest value of the δ (reSE) for the extended set is then incorporated into the structure determination for a total of seven isotopologues. The procedure repeats again, testing each remaining isotopologue and incorporating the one that gives the smallest δ (reSE) into the fit, for a new total of eight isotopologues. This procedure repeats until all 24 isotopologues are incorporated. As this iterative process could be tedious, a program, xrefiteration, has been written to automate it. The code will be discussed in more detail in a publication on the improved semi-experimental equilibrium structure determination of pyridazine.65 The resultant δ(reSE) values from each iteration are plotted in Fig. 7, along with δ(reSE) for the bond distances and the angles individually.

FIG. 7.

Plot of δ(reSE) vs the number of isotopologues (N) incorporated into the structure determination. The total error [δ(reSE), blue squares], the error in bond distances [green triangles], and the error in angles [purple circles] are presented. The isotopologue numbering scheme is presented explicitly in the accompanying legend, at the right.

FIG. 7.

Plot of δ(reSE) vs the number of isotopologues (N) incorporated into the structure determination. The total error [δ(reSE), blue squares], the error in bond distances [green triangles], and the error in angles [purple circles] are presented. The isotopologue numbering scheme is presented explicitly in the accompanying legend, at the right.

Close modal

Upon examination of the xrefiteration results, we observe that the addition of the [2,3-2H] and [2,4-2H] isotopologues (the last two) causes δ(reSE) with 24 isotopologues to increase to nearly the same as δ(reSE) with 12 isotopologues. In an attempt to understand this behavior, we excluded data from the last two isotopologues ([2,3-2H] and [2,4-2H]) and determined a new semi-experimental equilibrium structure, labeled reSE (r22), which is provided in the supplementary material (Table SIV) alongside the reSE structure. Despite the modest increase in the uncertainties obtained by including the last two isotopologues, the structural parameters themselves [reSE vs reSE (r22)] are hardly changed at all. The most substantial impact of the final two isotopologues, beyond raising δ(reSE), is to move the reSE values of RC2–H and AS1–C2–H closer to their BTE values (Fig. 8). This suggests that these isotopologues are providing important structural information about the locations of C2 (and C5) that is not contained in the isotopologue dataset from the previous 22 isotopologues.

FIG. 8.

Plots of the thiophene structural parameters as a function of the number of isotopologues (N) and their 2σ uncertainties with consistent scales for each distance and for each angle. The dashed line represents the BTE value of the parameter. The isotopologue ordering along the x axis is the same as that in Fig. 7.

FIG. 8.

Plots of the thiophene structural parameters as a function of the number of isotopologues (N) and their 2σ uncertainties with consistent scales for each distance and for each angle. The dashed line represents the BTE value of the parameter. The isotopologue ordering along the x axis is the same as that in Fig. 7.

Close modal

A comparison of the various correction terms for the best theoretical estimate of the equilibrium structure for thiophene (Table V) to equivalent data for pyrimidine1 shows that values for thiophene are somewhat larger, but not by a great deal. This leads us to suspect that the BTE results for thiophene might be of comparable accuracy to those obtained previously for pyrimidine. Referring to the last two columns of Table V or to Figs. 6 and 8, we observe that, for several structural parameters of thiophene, the BTE values are within 2σ of the reSE values, or nearly so, and the corresponding residuals are similar in magnitude to those found in pyrimidine. In contrast to pyrimidine, Fig. 8 shows that for two of the bond distances (RC2–C3 and RC2–H) and one of the angles in thiophene (AS1–C2–H), the BTE values are well outside 2σ of their corresponding reSE values. It is easily seen that all the offending parameters involve C2 and the H atom on that carbon. We suspect that this problem arises because these two atoms lie close to the b principal axis, a classically problematic issue in using moments of inertia to determine structures.25 In a planar molecule, the atom a axis coordinates determine Ib and the b axis coordinates determine Ia. An atom being near the b axis will hinder determination of its a axis coordinate and conversely. The uncertainties in atom coordinates are typically magnified when those atoms lie near any principal axis, but not on it. Sometimes, the principal axes can be substantially rotated by isotopic substitution to move such atoms away from the axis and greatly mitigate this problem. Not much rotation can occur in thiophene, however, because the heavy sulfur atom must always be very near the a axis.

To obtain a better understanding of the origin of the structural errors in thiophene, we expressed the various structure types in a new coordinate system shown in Table VI. We use rectangular coordinates aligned with the symmetry axis, but with the sulfur atom at the origin. There are four unique a axis coordinates and four unique b axis coordinates. We find that the agreement between BTE and reSE for all b axis coordinates is excellent. The a axis coordinate residuals for C3 and H3 are fairly small (especially considering that the values themselves are large), but the a axis coordinate residuals for C2 (0.000 52 Å) and, especially, H2 (−0.002 63 Å) are clearly where the problem lies. Because there is no reason to believe that the BTE value of the a axis coordinates would be less accurate than that of the b axis coordinates, it seems reasonable that any accuracy problems in the present thiophene reSE determination trace back to the proximity of the C2 and H2 atoms to the b principal axis, for which we have not yet found a satisfactory solution.

TABLE IV.

Experimental and computational structural parameters of thiophene.

reSEa,bCCSD(T)creSEd Ref. 30 rs Ref. 25 ree Ref. 28 rαf Ref. 27 
RS1C2 (Å) 1.71049 (18) 1.70944 1.7126 (5) 1.7140 (14) 1.704 (2) 1.7136 (11) 
RC2C3 (Å) 1.36564 (31) 1.36632 1.3622 (8) 1.3696 (17) 1.372 (3) 1.3783 (15) 
RC2H (Å) 1.07714 (17) 1.07633 1.0771 (5) 1.0776 (15) 1.085 (5) 1.0688 (6) 
RC3H (Å) 1.07856 (14) 1.07860 1.0794 (3) 1.0805 (14) 1.088 1.0812 (11) 
RC3C4 (Å) 1.4224 (10)g 1.42216 1.4233 (21) 1.4232 (23) 1.421 (4) 1.4274 (11) 
1/2 AC2S1C5 (deg) 46.024 (7) 46.051 45.94 (2) 46.09 (5) 46.2 (1) 46.28 (4) 
AS1C2C3 (deg) 111.608 (16) 111.596 111.66 (3) 111.49 (24) 111.6 111.34 (7) 
AS1C2H (deg) 120.065 (28) 120.286 120.11 (10) 119.89 (82) 119.9 (3) 120.24 (8) 
AC2C3H (deg) 123.414 (23) 123.416 123.46 (7) 123.25 (7) 123.4 123.56 (8) 
AC2S1C5 (deg) 92.047 (15)g 92.101 91.88 (4) 92.17 (10) 92.4 (2) 92.56 (8) 
Nisotopologues 24    
reSEa,bCCSD(T)creSEd Ref. 30 rs Ref. 25 ree Ref. 28 rαf Ref. 27 
RS1C2 (Å) 1.71049 (18) 1.70944 1.7126 (5) 1.7140 (14) 1.704 (2) 1.7136 (11) 
RC2C3 (Å) 1.36564 (31) 1.36632 1.3622 (8) 1.3696 (17) 1.372 (3) 1.3783 (15) 
RC2H (Å) 1.07714 (17) 1.07633 1.0771 (5) 1.0776 (15) 1.085 (5) 1.0688 (6) 
RC3H (Å) 1.07856 (14) 1.07860 1.0794 (3) 1.0805 (14) 1.088 1.0812 (11) 
RC3C4 (Å) 1.4224 (10)g 1.42216 1.4233 (21) 1.4232 (23) 1.421 (4) 1.4274 (11) 
1/2 AC2S1C5 (deg) 46.024 (7) 46.051 45.94 (2) 46.09 (5) 46.2 (1) 46.28 (4) 
AS1C2C3 (deg) 111.608 (16) 111.596 111.66 (3) 111.49 (24) 111.6 111.34 (7) 
AS1C2H (deg) 120.065 (28) 120.286 120.11 (10) 119.89 (82) 119.9 (3) 120.24 (8) 
AC2C3H (deg) 123.414 (23) 123.416 123.46 (7) 123.25 (7) 123.4 123.56 (8) 
AC2S1C5 (deg) 92.047 (15)g 92.101 91.88 (4) 92.17 (10) 92.4 (2) 92.56 (8) 
Nisotopologues 24    
a

Uncertainty reported is 2σ.

b

Vibration–rotation and electron mass corrections at CCSD(T)/cc-pCVTZ.

c

Evaluated using the cc-pCV5Z basis set.

d

Vibration–rotation and electron mass corrections at B2PLYP/VTZ.

e

Combined electron diffraction, microwave, vibrational, and computational data.

f

Combined electron diffraction, microwave, and liquid-crystal NMR data.

g

Parameter calculated from reSE with propagated error; see Ref. 57.

TABLE V.

Corrections for the best theoretical estimate (BTE) of the equilibrium structure (re) of thiophene and comparison with the reSE structure.

Basis setCorrelation RelativisticDBOCSum of
correction [Eq. (4)]correction [Eq. (5)]correction [Eq. (6)][Eq. (7)]corrections [Eq. (8)]CCSD(T)/cc-pCV5ZBTEreSEa
RS1–C2 (Å) −0.000 756 0.001 481 −0.000 052 0.000 009 0.000 682 1.709 44 1.71013 1.71049 (18) 
RC2–C3 (Å) −0.000 093 0.000 705 −0.000 355 0.000 012 0.000 269 1.366 32 1.36659 1.36564 (31) 
RC2–H (Å) −0.000 026 0.000 090 −0.000 100 0.000 135 0.000 099 1.076 33 1.07643 1.07714 (17) 
RC3–H (Å) −0.000 055 0.000 103 −0.000 111 0.000 130 0.000 067 1.078 60 1.07867 1.07856 (14) 
1/2 AC2–S1–C5 (deg) 0.011 523 −0.015 291 −0.011 943 0.001 172 −0.014 540 46.051 46.036 46.024 (7) 
AS1–C2-C3 (deg) −0.005 025 0.005 053 0.015 810 −0.001 276 0.014 561 111.596 111.610 111.608 (16) 
AS1–C2–H (deg) 0.000 635 −0.015 990 −0.031 264 0.001 444 −0.045 175 120.286 120.241 120.065 (28)b 
AC2–C3–H (deg) −0.002 507 −0.005 022 0.003 706 −0.001 211 −0.005 033 123.416 123.411 123.414 (23) 
AC2–S1–C5 (deg) 0.023 045 −0.030 583 −0.023 887 0.002 345 −0.029 079 92.101 92.072 92.047 (15)c 
Basis setCorrelation RelativisticDBOCSum of
correction [Eq. (4)]correction [Eq. (5)]correction [Eq. (6)][Eq. (7)]corrections [Eq. (8)]CCSD(T)/cc-pCV5ZBTEreSEa
RS1–C2 (Å) −0.000 756 0.001 481 −0.000 052 0.000 009 0.000 682 1.709 44 1.71013 1.71049 (18) 
RC2–C3 (Å) −0.000 093 0.000 705 −0.000 355 0.000 012 0.000 269 1.366 32 1.36659 1.36564 (31) 
RC2–H (Å) −0.000 026 0.000 090 −0.000 100 0.000 135 0.000 099 1.076 33 1.07643 1.07714 (17) 
RC3–H (Å) −0.000 055 0.000 103 −0.000 111 0.000 130 0.000 067 1.078 60 1.07867 1.07856 (14) 
1/2 AC2–S1–C5 (deg) 0.011 523 −0.015 291 −0.011 943 0.001 172 −0.014 540 46.051 46.036 46.024 (7) 
AS1–C2-C3 (deg) −0.005 025 0.005 053 0.015 810 −0.001 276 0.014 561 111.596 111.610 111.608 (16) 
AS1–C2–H (deg) 0.000 635 −0.015 990 −0.031 264 0.001 444 −0.045 175 120.286 120.241 120.065 (28)b 
AC2–C3–H (deg) −0.002 507 −0.005 022 0.003 706 −0.001 211 −0.005 033 123.416 123.411 123.414 (23) 
AC2–S1–C5 (deg) 0.023 045 −0.030 583 −0.023 887 0.002 345 −0.029 079 92.101 92.072 92.047 (15)c 
a

Uncertainty reported is 2σ.

b

AS1–C2–H has the greatest discrepancy between theory and experiment.

c

Parameter calculated from reSE with propagated error.

TABLE VI.

Rectangular coordinates for thiophene structure with the sulfur atom centered at the origin (0,0).a

reSECCSD(T)/cc-pCV5ZBest theoretical estimate
ababab
0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 
C2 −1.187 70 1.23092 −1.186 39 1.230 72 −1.187 18 1.230 91 
C5 −1.187 70 −1.230 92 −1.186 39 −1.230 72 −1.187 18 −1.230 91 
C3 −2.450 58 0.711 20 −2.450 04 0.711 08 −2.451 08 0.711 17 
C4 −2.450 58 −0.711 20 −2.450 04 −0.711 08 −2.451 08 −0.711 17 
H2 −0.891 55 2.266 55 −0.893 97 2.266 57 −0.894 18 2.266 70 
H5 −0.891 55 −2.266 55 −0.893 97 −2.266 57 −0.894 18 −2.266 70 
H3 −3.342 46 1.317 70 −3.341 80 1.317 82 −3.342 85 1.318 03 
H4 −3.342 46 −1.317 70 −3.341 80 −1.317 82 −3.342 85 −1.318 03 
reSECCSD(T)/cc-pCV5ZBest theoretical estimate
ababab
0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 
C2 −1.187 70 1.23092 −1.186 39 1.230 72 −1.187 18 1.230 91 
C5 −1.187 70 −1.230 92 −1.186 39 −1.230 72 −1.187 18 −1.230 91 
C3 −2.450 58 0.711 20 −2.450 04 0.711 08 −2.451 08 0.711 17 
C4 −2.450 58 −0.711 20 −2.450 04 −0.711 08 −2.451 08 −0.711 17 
H2 −0.891 55 2.266 55 −0.893 97 2.266 57 −0.894 18 2.266 70 
H5 −0.891 55 −2.266 55 −0.893 97 −2.266 57 −0.894 18 −2.266 70 
H3 −3.342 46 1.317 70 −3.341 80 1.317 82 −3.342 85 1.318 03 
H4 −3.342 46 −1.317 70 −3.341 80 −1.317 82 −3.342 85 −1.318 03 
a

a axis and b axis coordinates in Å

The current study explores the limits of how accurately and precisely an reSE structure can be determined by rotational spectroscopy with CCSD(T) corrections. Despite obtaining an reSE structure for thiophene that is a substantial improvement on previous structure determinations for molecules containing sulfur, the agreement found for some parameters is somewhat problematic compared to the outstanding agreement found for reSE of pyrimidine. For pyrimidine, all structural parameters of best theoretical CCSD(T) re are within the statistical uncertainties of semi-experimental reSE with CCSD(T) corrections. For thiophene, this is not the case, despite a substantial over-determination of its geometry with moments of inertia from 24 isotopologues. Our analysis indicates that the proximity of C2 and H2 to the b principal axis is the source of the problem, preventing the locations of those atoms from being determined to sufficient accuracy. It was not possible in this study to overcome the problem by the inclusion of isotopologues that cause a large rotation of the principal axes. The large mass of the sulfur atom in thiophene prevents any isotopic substitution from causing the necessary large rotation of the principal axes. Given the accuracy of the determination of all atom positions except those near the b axis, this study provides strong evidence that satisfactory agreement between reSE and the best computed parameters is as likely for a molecule containing a third-row atom, as for the one which does not. Future investigations of other molecules with third-row atoms (Si, P, S, Cl, etc.), but without any atoms lying near a principal axis, would provide an opportunity to confirm this assertion.

See the supplementary material for least-squares fitting files for all thiophene isotopologues, spectroscopic constants in the A-reduction, data distribution plots for isotopologues, determinable constant equations, determinable constants from the A and S reductions, output files from computations, output files from the structure fitting programs (xrefit and xrefiteration), synthetic details, and characterization data.

We acknowledge funding from the National Science Foundation (Grant Nos. RJM CHE-1664912, CHE-1954270, and JFS CHE-1664325). We also acknowledge funding from the National Institutes of Health for the support of the shared UW-Madison departmental mass spectrometry instruments (Grant No. NIH 1S10 OD020022-1). K.K. thanks KAKENHI, Grants in-Aid for Scientific Research by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant Nos. 26108507, 15H03646, and 19H05074), and the National Astronomical Observatory of Japan. We acknowledge Michael McCarthy for the loan of an amplification multiplication chain. We thank the Harvey Spangler Award (to B.J.E.) for the funding that supported the purchase of a zero-bias detector. We thank Maria A. Zdanovskaia and Andrew N. Owen for their assistance and thoughtful conversations.

The data that support the findings of this study are available within the article and its supplementary material.

1.
Z. N.
Heim
,
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Molecular structure determination: Equilibrium structure of pyrimidine (m-C4H4N2) from rotational spectroscopy (reSE) and high-level ab initio calculation (re) agree within the uncertainty of experimental measurement
,”
J. Chem. Phys.
152
,
104303
(
2020
).
2.
A.
Singh
,
G.
Singh
, and
P. M. S.
Bedi
, “
Thiophene derivatives: A potent multitargeted pharmacological scaffold
,”
J. Heterocycl. Chem.
57
,
2658
2703
(
2020
).
3.
B.
Amna
,
H. M.
Siddiqi
,
A.
Hassan
, and
T.
Ozturk
, “
Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems
,”
RSC Adv.
10
,
4322
4396
(
2020
).
4.
G.
Barbarella
,
M.
Melucci
, and
G.
Sotgiu
, “
The versatile thiophene: An overview of recent research on thiophene-based materials
,”
Adv. Mater.
17
,
1581
1593
(
2005
).
5.
J.
Heinz
and
D.
Schulze-Makuch
, “
Thiophenes on Mars: Biotic or abiotic origin?
,”
Astrobiology
20
,
552
561
(
2020
).
6.
J. L.
Eigenbrode
,
R. E.
Summons
,
A.
Steele
,
C.
Freissinet
,
M.
Millan
,
R.
Navarro-González
,
B.
Sutter
,
A. C.
McAdam
,
H. B.
Franz
,
D. P.
Glavin
,
P. D.
Archer
,
P. R.
Mahaffy
,
P. G.
Conrad
,
J. A.
Hurowitz
,
J. P.
Grotzinger
,
S.
Gupta
,
D. W.
Ming
,
D. Y.
Sumner
,
C.
Szopa
,
C.
Malespin
,
A.
Buch
, and
P.
Coll
, “
Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars
,”
Science
360
,
1096
(
2018
).
7.
M.
Lattelais
,
Y.
Ellinger
,
A.
Matrane
, and
J.-C.
Guillemin
, “
Looking for heteroaromatic rings and related isomers as interstellar candidates
,”
Phys. Chem. Chem. Phys.
12
,
4165
4171
(
2010
).
8.
M.
Agúndez
,
J.
Cernicharo
, and
M.
Guélin
, “
New molecules in IRC +10216: Confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN
,”
Astron. Astrophys.
570
,
A45
(
2014
).
9.
J.
Cernicharo
,
M.
Guelin
,
H.
Hein
, and
C.
Kahane
, “
Sulfur in IRC +10216
,”
Astron. Astrophys.
181
,
L9
L12
(
1987
).
10.
W. W.
Coblentz
,
Investigations of Infrared Spectra Part 1: Infra-Red Absorption Spectra
(
Carnegie Institution of Washington
,
1905
).
11.
H. W.
Thompson
and
R. B.
Temple
, “
The infra-red spectra of furan and thiophen
,”
Trans. Faraday Soc.
41
,
27
34
(
1945
).
12.
R.
Barnes
,
U.
Liddel
, and
V.
Williams
, “
Infrared spectroscopy. Industrial applications
,”
Ind. Eng. Chem. Anal. Ed.
15
,
659
709
(
1943
).
13.
R. B.
Barnes
and
R. R.
Brattain
, “
The near infrared spectrum of benzene-d6
,”
J. Chem. Phys.
3
,
446
449
(
1935
).
14.
G. B.
Bonino
and
R.
Manzoni-Ansidei
, “
The Raman spectra of thiophenes and furans and a few of their derivatives
,”
Z. Phys. Chem.
B25
,
327
347
(
1934
).
15.
M.
Rico
,
J. M.
Orza
, and
J.
Morcillo
, “
Fundamental vibrations of thiophene and its deuterated derivatives
,”
Spectrochim. Acta
21
,
689
719
(
1965
).
16.
T. D.
Klots
,
R. D.
Chirico
, and
W. V.
Steele
, “
Complete vapor phase assignment for the fundamental vibrations of furan, pyrrole and thiophene
,”
Spectrochim. Acta, Part A
50
,
765
795
(
1994
).
17.
B.
Pankoke
,
K. M. T.
Yamada
, and
G.
Winnewisser
, “
High resolution IR-spectra of furan and thiophene
,”
Z. Naturforsch., A
48
,
1193
1202
(
1994
).
18.
J.
van Wijngaarden
,
S. J.
Van Nest
,
C. W.
van Dijk
, and
D. W.
Tokaryk
, “
Rovibrational spectrum and analysis of the ν8 band of thiophene using infrared synchrotron radiation
,”
J. Mol. Spectrosc.
259
,
56
59
(
2010
).
19.
J.
van Wijngaarden
and
D. W.
Tokaryk
, “
High resolution synchrotron-based study and analysis of the ν14 band of thiophene
,”
J. Mol. Spectrosc.
251
,
365
368
(
2008
).
20.
F.
Hegelund
,
R.
Wugt Larsen
, and
M. H.
Palmer
, “
The high-resolution infrared spectrum of thiophene between 600 and 1200 cm−1: A spectroscopic and theoretical study of the fundamental bands ν6, ν7, ν13, and the c-Coriolis interacting dyad ν5, ν19
,”
J. Mol. Spectrosc.
247
,
100
114
(
2008
).
21.
X.-F.
Wu
,
X.
Zheng
,
H.-G.
Wang
,
Y.-Y.
Zhao
,
X.
Guan
,
D. L.
Phillips
,
X.
Chen
, and
W.
Fang
, “
A resonance Raman spectroscopic and CASSCF investigation of the Franck–Condon region structural dynamics and conical intersections of thiophene
,”
J. Chem. Phys.
133
,
134507
(
2010
).
22.
D. K.
Singh
,
S. K.
Srivastava
,
A. K.
Ojha
, and
B. P.
Asthana
, “
Vibrational study of thiophene and its solvation in two polar solvents, DMSO and methanol by Raman spectroscopy combined with ab initio and DFT calculations
,”
J. Mol. Struct.
892
,
384
391
(
2008
).
23.
T.
Ogata
and
K.
Kozima
, “
Microwave spectrum, barrier height to internal rotation of methyl group of 3-methylthiophene, and dipole moments of 3-methylthiophene and thiophene
,”
J. Mol. Spectrosc.
42
,
38
46
(
1972
).
24.
B.
Bak
,
D.
Christensen
,
J.
Rastrup‐Andersen
, and
E.
Tannenbaum
, “
Microwave spectra of thiophene, 2‐ and 3‐monodeutero, 3,3′‐dideutero, and tetradeuterothiophene. Structure of the thiophene molecule
,”
J. Chem. Phys.
25
,
892
896
(
1956
).
25.
B.
Bak
,
D.
Christensen
,
L.
Hansen-Nygaard
, and
J.
Rastrup-Andersen
, “
The structure of thiophene
,”
J. Mol. Spectrosc.
7
,
58
63
(
1961
).
26.
J.
Kraitchman
, “
Determination of molecular structure from microwave spectroscopic data
,”
Am. J. Phys.
21
,
17
24
(
1953
).
27.
P. B.
Liescheski
and
D. W. H.
Rankin
, “
Determination of the rα structure of thiophene by combined analysis of electron diffraction, liquid crystal NMR and rotational data
,”
J. Mol. Struct.
178
,
227
241
(
1988
).
28.
I. V.
Kochikov
,
Y. I.
Tarasov
,
V. P.
Spiridonov
,
G. M.
Kuramshina
,
D. W. H.
Rankin
,
A. S.
Saakjan
, and
A. G.
Yagola
, “
The equilibrium structure of thiophene by the combined use of electron diffraction, vibrational spectroscopy and microwave spectroscopy guided by theoretical calculations
,”
J. Mol. Struct.
567-568
,
29
40
(
2001
).
29.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
, “
Semi-experimental equilibrium structure determinations by employing B3LYP/SNSD anharmonic force fields: Validation and application to semirigid organic molecules
,”
J. Phys. Chem. A
119
,
2058
2082
(
2015
).
30.
E.
Penocchio
,
M.
Piccardo
, and
V.
Barone
, “
Semiexperimental equilibrium structures for building blocks of organic and biological molecules: The B2PLYP route
,”
J. Chem. Theory Comput.
11
,
4689
4707
(
2015
).
31.
W. F.
White
,
Microwave Spectra of Some Sulfur and Nitrogen Compounds
, NASATechnical Note, NASA TN D-7450, National Aeronautics and Space Administration,Washington, DC,
1974
.
32.
N. M.
Pozdeev
and
L. N.
Gunderova
, “
Microwave spectra of thiophane and thiophene
,”
Khim. Seraorg. Soedin., Soderzh. Neftyakh Nefteprod.
9
,
101
106
(
1972
).
33.
N. M.
Pozdeev
,
L. I.
Panikovskaya
,
L. N.
Lisovskaya
, and
A. K.
Mamleev
,
Primenenie Molekulyarnoi Spektroskopii v Khimii, Sbornik Dokladov na Sibirskom Soveshchanii po Spektroskopii
, 3rd ed. (
Krasnoyarsk, USSR
,
1966
), pp.
26
27
.
34.
U.
Kretschmer
,
W.
Stahl
, and
H.
Dreizler
, “
The rotational spectra of the 32S-, 33S-, and 34S-isotopomers of thiophene
,”
Z. Naturforsch., A
48
,
733
736
(
1993
).
35.
K.
Kobayashi
,
K.
Takamura
,
Y.
Sakai
,
S.
Tsunekawa
,
H.
Odashima
, and
N.
Ohashi
, “
The microwave spectroscopy of methyl formate in the second torsional excited state
,”
Astrophys. J., Suppl. Ser.
205
,
9
(
2013
).
36.
Y.
Fukuyama
,
H.
Odashima
,
K.
Takagi
, and
S.
Tsunekawa
, “
The microwave spectrum of propionitrile (C2H5CN) in the frequency range from 8 to 200 GHz
,”
Astrophys. J., Suppl. Ser.
104
,
329
(
1996
).
37.
A.
McJunkins
and
G. G.
Brown
, “
An inexpensive room-temperature chirped-pulse fourier transform microwave (RT-CP-FTMW) spectrometer
,”
J. Undergrad. Chem. Res.
10
,
158
161
(
2011
).
38.
B. J.
Esselman
,
B. K.
Amberger
,
J. D.
Shutter
,
M. A.
Daane
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites
,”
J. Chem. Phys.
139
,
224304
(
2013
).
39.
M. A.
Zdanovskaia
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
The 130–370 GHz rotational spectrum of phenyl isocyanide (C6H5NC)
,”
J. Chem. Phys.
151
,
024301
(
2019
).
40.
Z.
Kisiel
,
L.
Pszczółkowski
,
B. J.
Drouin
,
C. S.
Brauer
,
S.
Yu
,
J. C.
Pearson
,
I. R.
Medvedev
,
S.
Fortman
, and
C.
Neese
, “
Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations
,”
J. Mol. Spectrosc.
280
,
134
144
(
2012
).
41.
Z.
Kisiel
,
L.
Pszczółkowski
,
I. R.
Medvedev
,
M.
Winnewisser
,
F. C.
De Lucia
, and
E.
Herbst
, “
Rotational spectrum of trans–trans diethyl ether in the ground and three excited vibrational states
,”
J. Mol. Spectrosc.
233
,
231
243
(
2005
).
42.
PROSPE, Programs for ROtational SPEctroscopy, http://info.ifpan.edu.pl/∼kisiel/prospe.htm.
43.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01 (
Gaussian, Inc.
,
Wallingford, CT
,
2016
).
44.
J.
Schmidt
and
W.
Polik
, WebMO Enterprise,
WebMO LLC
,
Holland, MI
,
2013
.
45.
NBO 7.0.8 (11 February 2020) NBO 7.0,
E. D.
Glendening
,
J. K.
Badenhoop
,
A. E.
Reed
,
J. E.
Carpenter
,
J. A.
Bohmann
,
C. M.
Morales
,
P.
Karafiloglou
,
C. R.
Landis
, and
F.
Weinhold
,
Theoretical Chemistry Institute, University of Wisconsin
,
Madison, WI
,
2018
.
46.
J. F.
Stanton
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, CFOUR, coupled-cluster techniques for computational chemistry, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
T.
Nottoli
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
, and
J. D.
Watts
, the integral packages MOLECULE
J.
Almlöf
and
P. R.
Taylor
, PROPS
P. R.
Taylor
, ABACUS
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
, and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, http://www.cfour.de.
47.
I. M.
Mills
, “
Vibration-rotation structure in asymmetric- and symmetric-top molecules
,” in
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic Press
,
New York
,
1972
), Vol. 1, pp.
115
140
.
48.
W.
Schneider
and
W.
Thiel
, “
Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide
,”
Chem. Phys. Lett.
157
,
367
373
(
1989
).
49.
J. F.
Stanton
,
C. L.
Lopreore
, and
J.
Gauss
, “
The equilibrium structure and fundamental vibrational frequencies of dioxirane
,”
J. Chem. Phys.
108
,
7190
7196
(
1998
).
50.
W. H.
Flygare
, “
Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters
,”
Chem. Rev.
74
,
653
687
(
1974
).
51.
S.
Lin
,
D. E.
Herbert
,
A.
Velian
,
M. W.
Day
, and
T.
Agapie
, “
Dipalladium(I) terphenyl diphosphine complexes as models for two-site adsorption and activation of organic molecules
,”
J. Am. Chem. Soc.
135
,
15830
15840
(
2013
).
52.
H. J.
Leis
,
G.
Fauler
, and
W.
Windischhofer
, “
Stable isotope labeled target compounds: Preparation and use as internal standards in quantitative mass spectrometry
,”
Curr. Org. Chem.
2
,
131
144
(
1998
).
53.
A. G.
Burton
,
P. P.
Forsythe
,
C. D.
Johnson
, and
A. R.
Katritzky
, “
The kinetics and mechanism of the electrophilic substitution of heteroaromatic compounds. Part XXVII. The nitration and hydrogen exchange of 1,3,5-trimethylpyrazole, 3,5-dimethylisoxazole, and 3,5-dimethylisothiazole
,”
J. Chem. Soc. B
1971
,
2365
2371
.
54.
P.
Roussel
and
J.
Metzger
, “
Synthesis and infrared spectral study of the deuteriothiazoles
,”
Bull. Soc. Chim. Fr.
1962
,
2075
2078
.
55.
B.
Alonso
,
M.
Ocejo
,
L.
Carrillo
,
J. L.
Vicario
,
E.
Reyes
, and
U.
Uria
, “
Using heteroaryl-lithium reagents as hydroxycarbonyl anion equivalents in conjugate addition reactions with (S,S)-(+)-pseudoephedrine as chiral auxiliary; enantioselective synthesis of 3-substituted pyrrolidines
,”
J. Org. Chem.
78
,
614
627
(
2013
).
56.
W.
Gordy
and
R.
Cook
,
Microwave Molecular Spectra
, 3rd ed. (
Wiley-Interscience
,
New York
,
1984
).
57.
E. O.
Lebigot
, Uncertainties: A Python package for calculations with uncertainties, v 3.1.5.
58.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
59.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
,
054101
(
2005
).
60.
L.
Cheng
and
J.
Gauss
, “
Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian
,”
J. Chem. Phys.
135
,
084114
(
2011
).
61.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
62.
K. G.
Dyall
, “
Interfacing relativistic and nonrelativistic methods. II. Investigation of a low-order approximation
,”
J. Chem. Phys.
109
,
4201
4208
(
1998
).
63.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
, “
The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects
,”
J. Chem. Phys.
84
,
4481
4484
(
1986
).
64.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1956
).
65.
A. N.
Owen
,
M. A.
Zdanovskaia
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
The semi-experimental equilibrium (reSE) and theoretical structures of pyridazine (o-C4H4N2)
” (unpublished).

Supplementary Material