The complex-scaling method can be used to calculate molecular resonances within the Born–Oppenheimer approximation, assuming that the electronic coordinates are dilated independently of the nuclear coordinates. With this method, one will calculate the complex energy of a non-Hermitian Hamiltonian, whose real part is associated with the resonance position and imaginary part is the inverse of the lifetime. In this study, we propose techniques to simulate resonances on a quantum computer. First, we transformed the scaled molecular Hamiltonian to second quantization and then used the Jordan–Wigner transformation to transform the scaled Hamiltonian to the qubit space. To obtain the complex eigenvalues, we introduce the direct measurement method, which is applied to obtain the resonances of a simple one-dimensional model potential that exhibits pre-dissociating resonances analogous to those found in diatomic molecules. Finally, we applied the method to simulate the resonances of the H2 molecule. The numerical results from the IBM Qiskit simulators and IBM quantum computers verify our techniques.

Resonances are intermediate or quasi-stationary states that exist during unique atomic processes such as when an excited atom autoionizes, an excited molecule disassociates unimolecularly, or a molecule attracts an electron and then the ion disassociates into stable ionic and neutral subsystems.1 The characteristics of resonances, such as energy and lifetime, can be revealed by experiments or predicted by theory. One theoretical method to compute properties associated with such resonances is called the complex-scaling method, developed in Refs. 27. This method is based on the Balslev–Combes theorem, which is valid for dilation-analytic potentials and can be extended for non-dilation-analytic potential energies.8 Additionally, several variants have been developed to study problems such as Stark resonances9–11 induced by an external electric field. The real space extension of this method uses standard quantum chemistry packages and stabilization graphs.12 Its main applications are to study the decay of metastable states existing above the ionization threshold of the Li center in open-shell systems such as LiHe,13 in the computation of transition amplitudes among metastable states,14 and in explaining Autler–Townes splitting of spectral lines.15 

The complex-scaling method usually requires a large basis set to predict resonances with good accuracy. For example, the helium 1S resonance uses 32 Hylleraas type functions for basis construction,16 and the H22Σu+(σg2σu) resonance takes a total of 38 constructed Gaussian atomic bases.8 The computational overhead will become overwhelming if more basis functions need to be considered, such as when simulating larger molecular systems or requiring higher accuracy. Moreover, dimensional scaling and large-order dimensional perturbation theory have been applied for complex eigenvalues using the complex-scaling method.17,18 As for bound states,19–23 quantum computing algorithms can overcome the above computational limitation problem for resonances. However, most algorithms cannot be directly adapted to resonance calculation with the complex-scaling method because the complex-rotated Hamiltonian is non-Hermitian. For example, the propagator eiH(reiθ)t in the conventional phase estimation algorithm (PEA) with trotterization24 will be non-unitary, and it cannot be implemented in a quantum circuit directly. In this way, a quantum algorithm for resonance calculation that can work with non-Hermitian Hamiltonians is needed. Daskin et al.25 proposed a circuit design that can solve complex eigenvalues of a general non-unitary matrix. The method applies the matrix rows to an input state one by one and estimates complex eigenvalues via an iterative PEA process. However, for molecular Hamiltonians, the gate complexity of this general design is exponential in system size. In our previous publication,21 we briefly mentioned that our direct measurement method can solve complex eigenvalues of non-Hermitian Hamiltonians with polynomial gates. This study extends the direct measurement method and applies it to simple molecular systems as benchmark tests to obtain resonance properties. In particular, we will use IBM’s Qiskit26 simulators and their quantum computers to calculate these resonances.

In Secs. IIV, we first show how to obtain the complex-scaled Hamiltonian for molecular systems and transform it into the Pauli operator form. Then, we introduce the direct measurement method that can derive the Hamiltonian’s complex eigenvalues. Finally, we apply this method to do resonance calculation for a simple model system and a benchmark test system H2 using simulators and IBM quantum computers.

This section presents the steps needed to convert the complex-rotated Hamiltonian to a suitable form that can be simulated on a quantum computer. In the Born–Oppenheimer approximation, the electronic Hamiltonian of a molecular system can be written as a sum of electronic kinetic energy and potential energy of the form

(1)

where Zσ is the σth nucleus’s charge, Rσ is the σth nucleu’s position, and ri and rj represents the ith and jth electrons’ position. The complex-scaling method is applied to the study of molecular resonances within the framework of Born–Oppenheimer approximation. Following Moiseyev et al.,27 the electronic coordinates are dilated independently of the nuclear coordinates. Given such a Hamiltonian H(r) in Eq. (1), where r represents electrons’ coordinates, the complex-scaling method rotates r into the complex plane by θ, rre. Thus, the Hamiltonian becomes H(re). After a complex rotation by θ, each electron’s position r becomes r/η, where η = e, and thus, the new Hamiltonian from Eq. (1) becomes

(2)
(3)
(4)

It is shown that the system’s resonance state’s energy E and width Γ=1τ, where τ is the life time, are related to the corresponding complex eigenvalue of H(re),3,28

(5)

When doing exact calculations in an infinite basis limit, Eθ in Eq. (5) is not a function of θ. However, there would be dependence in reality because only a truncated basis set is always used in practice. The best resonance estimate is when the complex energy Eθ pauses or slows down in its trajectory28,29 in the (Eθ, θ) plane or dEθdθ=0. In this way, E and Γ can be obtained by solving the new Hamiltonian’s eigenvalues for θ trajectories and looking for the pause. A scaling parameter α is commonly used in the complex rotation process to locate better resonances, which makes η = αe. We refer the readers to the book on non-Hermitian quantum mechanics by Moiseyev for more details and method applications.27 

After choosing a proper orthogonal basis set {ψi(r)}, the Hamiltonian can be converted into a second-quantization form,

(6)

In the equation, ai and ai are fermionic creation and annihilation operators. The coefficients hij and hijkl can be calculated by

(7)

With the Jordan–Wigner transformation,30 

(8)

in which X, Y, and Z are the Pauli operators and

(9)

and the Hamiltonian in Eq. (6) will be further transformed into Pauli operators as

(10)

In the summation, ci represents a complex coefficient and Pi represents a k-local tensor product of Pauli operators, where kn and n is the size of the basis set. Alternatively, the Bravyi–Kitaev transformation30 or parity transformation can also be used in the final step for obtaining the Hamiltonian in the qubit space.

The above process is the same as the conventional Hamiltonian derivation in quantum computing for electronic structure calculations of bound states.19,31–34 Here, for resonance calculations, to make the Hamiltonian more compatible with the direct measurement method, we rewrite Eq. (10) as

(11)

where na = ⌈log2L⌉. The coefficient βi and the operator Vi are determined in the following ways:

(12)

The direct measurement method is inspired by the direct application of the phase estimation algorithm35 as briefly discussed in our previous publication.21 Here, the basic idea is to apply the complex-rotated Hamiltonian to the state of the molecular system and obtain the complex energy information from the output state. Since the original non-Hermitian Hamiltonian cannot be directly implemented in a quantum circuit, this direct measurement method embeds it into a larger dimensional unitary operator.

Assuming n spin orbitals need to be considered for the system, the direct measurement method requires ns = n qubits to prepare the state of the model system ϕrs and an extra na ancilla qubits to enlarge the non-Hermitian Hamiltonian to be a unitary operator. The quantum circuit is shown in Fig. 1.

FIG. 1.

The quantum circuit for the direct measurement method. B and V gates are constructed based on the coefficients and operators in Eq. (11). The system qubits’ state and ancilla qubits’ state are initialized as 0a and ϕrs, respectively.

FIG. 1.

The quantum circuit for the direct measurement method. B and V gates are constructed based on the coefficients and operators in Eq. (11). The system qubits’ state and ancilla qubits’ state are initialized as 0a and ϕrs, respectively.

Close modal

The B and V gates in the circuit are designed to have the following properties:

(13)
(14)

which means B transforms the initial ancilla qubits’ state to a vector of coefficients and V applies all Vi on system qubits based on ancilla qubits’ states. One construction choice for B could be implementing the unitary operator

(15)

As for V, a series of multi-controlled Vi gates will do the work. If ϕrs is chosen as an eigenstate and we apply the whole circuit of B, V, and B,

(16)

on it, the output state will be

(17)

where Ee (E ≥ 0) is the corresponding eigenvalue and |Φ⟩ is a state whose ancilla qubits’ state is perpendicular to 0a. Then, we can derive E by measuring the output state. To obtain the phase φ, we apply a similar circuit for Hθ=xIn+Hθ, where x is a selected real number, and perform the measurements. The calculation details are found in  Appendix C.

In this section, we calculate the resonance properties of a model system using the direct measurement method. This system is the following one-dimensional potential:28 

(18)

Parameters are chosen as λ = 0.1 and J = 0.8. The potential plot is in Fig. 2. This potential is used to model some resonance phenomena in diatomic molecules. We only consider one electron under this potential. The original Hamiltonian and the complex-rotated Hamiltonian can be written as

(19)
(20)

To make the setting consistent with the original literature, η is chosen to be e and the scaling parameter α is embedded in n Gaussian basis functions

(21)
(22)

The {χk(α)} basis set is not orthogonal, so we apply the Gram–Schmidt process and iteratively construct an orthogonal basis set {ψi} as follows:

(23)
(24)

Since there is only one electron, we do not consider spin interactions. This {ψi} basis set is used in the second-quantization step to get the final Hamiltonian in the Pauli matrix form. The resonance eigenvalue found in Ref. 28 with n = 10 basis functions is Eθ = 2.124 − 0.019i hartree. We will try to get the same resonance by applying the direct measurement method using the Qiskit package. The Qiskit package supports different backends, including a statevector simulator that executes ideal circuits, a QASM simulator that provides noisy gate simulation, and various quantum computers. In what follows, we show the results when the basis function number is n = 5 and n = 2. In particular, the former n = 5 case shows how θ trajectories locate the best resonance estimate, and the latter n = 2 cases show how to further simplify the quantum circuit for the direct measurement method and run it on IBM quantum computers.

FIG. 2.

The one-dimensional potential V(x)=(12x2J)eλx2+J, where λ = 0.1 and J = 0.8.

FIG. 2.

The one-dimensional potential V(x)=(12x2J)eλx2+J, where λ = 0.1 and J = 0.8.

Close modal

C1 in Table I is our primary example where we follow the above steps in Secs. II and III for n = 5. An example of the complex-rotated Hamiltonian is shown in  Appendix A. Figure 3 shows a sweep of scaling parameters α for statevector simulations of θ trajectories. Most trajectories pause around the point, Eθ = 2.1265 − 0.0203i hartree, when α = 0.65 and θ = 0.160. Based on Eq. (5), this indicates that the resonance energy and width are E = 2.1265 hartree and Γ = 0.0406 hartree, respectively, close to the resonance energy from Ref. 28 The IBM quantum computer cannot perform the method due to a large number of standard gates in the circuit. Instead, we used the QASM simulator for 4 * 104 shots and obtained the system’s resonance energy at α = 0.65, θ = 0.160, and Eθ = 2.1005 − 0.3862i hartree. This result has an error of around 0.3 hartree but can be augmented by more sample measurements.

TABLE I.

The number of qubits and estimated gates in different cases when the direct measurement method is used to calculate the resonance properties of the model system. The estimation for gate numbers is based on the QASM simulator and IBM machines.

Case Number of Number ofNumber ofNumber of Number of
namebasis functionstotal qubitssystem qubitsancilla qubitsgates
C1 10 ∼106 
C2 ∼800 
C3 ∼200 
C4 ∼10 
Case Number of Number ofNumber ofNumber of Number of
namebasis functionstotal qubitssystem qubitsancilla qubitsgates
C1 10 ∼106 
C2 ∼800 
C3 ∼200 
C4 ∼10 
FIG. 3.

Trajectories of a complex eigenvalue on the rotation angle θ for fixed n = 5 and various α, calculated by the Qiskit statevector simulator. θ ranges from 0.1 to 0.24 with a step of 0.01. The green point shows the best estimation of resonance energy, which is E = 2.1265 − 0.0203i hartree, that occurs at α = 0.65 and θ = 0.160. The input state for the direct measurement method is obtained by directly diagonalizing the complex-rotated Hamiltonian matrix.

FIG. 3.

Trajectories of a complex eigenvalue on the rotation angle θ for fixed n = 5 and various α, calculated by the Qiskit statevector simulator. θ ranges from 0.1 to 0.24 with a step of 0.01. The green point shows the best estimation of resonance energy, which is E = 2.1265 − 0.0203i hartree, that occurs at α = 0.65 and θ = 0.160. The input state for the direct measurement method is obtained by directly diagonalizing the complex-rotated Hamiltonian matrix.

Close modal

When taking n = 2 for the basis function, we are not able to locate the best resonance estimate (see Fig. 3) based on direct diagonalization. Hence, we only use the direct measurement method to calculate the complex eigenenergy when α = 0.65 and θ = 0.160, where the best location is at n = 5. We run the direct measurement method using simulators first and then try to reduce the number of ancilla qubits to make the resulting circuit short enough to be executed in the IBM quantum computers.

C2 in Table I is the case when we follow the steps for n = 2 in Secs. II and III. The Hamiltonian Hθ and how to calculate its complex eigenvalue are shown in Appendix D 1 [Eq. (D1)]. Figure 4 gives the quantum circuit for Hθ. This circuit can be executed in simulators with the results listed in Table II.

FIG. 4.

The quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [1.315 56, 0.13 333, 0.133 33, 0.252 12, 1.063 78]. V0, V1, V2, V3, and V4 are applying e−0.04180iII, e2.32888iYY, e2.32888iXX, e3.05283iZI, and e3.11093iIZ, respectively.

FIG. 4.

The quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [1.315 56, 0.13 333, 0.133 33, 0.252 12, 1.063 78]. V0, V1, V2, V3, and V4 are applying e−0.04180iII, e2.32888iYY, e2.32888iXX, e3.05283iZI, and e3.11093iIZ, respectively.

Close modal
TABLE II.

The complex eigenenergy obtained by directly diagonalizing the Hamiltonian and by running different simulators. The QASM simulator is configured to have no noise, and it takes 105 samples to calculate the complex eigenenergy.

MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1279 − 0.1100i 2 × 10−3 
MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1279 − 0.1100i 2 × 10−3 

However, it is too complicated to be successfully run in IBM quantum computers. For C3 in Table I, we simplify the quantum circuit by calculating the complex eigenvalue for the Hamiltonian Hθ in Appendix D 2 [Eq. (D3)]. Because there are only four terms left, two ancilla qubits are enough for the method. The simplified quantum circuit is then shown in Fig. 5. To avoid introducing more ancilla qubits, instead of Hθ=Hθ+xII, we can run a similar four-qubit circuit for Hθ=Hθ+Hθ3, which has the same terms of tensor products as Hθ with different coefficients. This circuit can be executed successfully in the simulators and the IBM quantum computers. However, it costs around 200 gates in the IBM quantum computers, leading to a significant error. The resulting resonance eigenenergies and errors can be seen in Table III.

FIG. 5.

The simplified quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [0.133 33, 0.133 33, 0.252 12, 1.063 78]. V0, V1, V2, and V3 are applying e2.32888iYY, e2.32888iXX, e3.05283iZI, and e3.11093iIZ, respectively.

FIG. 5.

The simplified quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [0.133 33, 0.133 33, 0.252 12, 1.063 78]. V0, V1, V2, and V3 are applying e2.32888iYY, e2.32888iXX, e3.05283iZI, and e3.11093iIZ, respectively.

Close modal
TABLE III.

The complex eigenenergy obtained by directly diagonalizing the Hamiltonian, running simulators and using IBM quantum computers. The QASM simulator is configured to be noiseless, and it takes 105 samples to calculate the complex eigenenergy. The IBM quantum computer takes 213 samples.

MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1264 − 0.1099i 1 × 10−3 
IBM quantum computer 2.0700 − 0.4890i 0.3841 
MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1264 − 0.1099i 1 × 10−3 
IBM quantum computer 2.0700 − 0.4890i 0.3841 

For the Hamiltonian in Eq. (D3), a simpler circuit can be constructed if we try to calculate the complex eigenvalue of its square [Eq. (D6) in Appendix D 3]. This is C4 in Table I. The quantum circuit for this Hθ2 is shown in Fig. 6.

FIG. 6.

The quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [1.195 77, 0.535 29]. V0 and V1 are applying e−0.09723iII and e−0.05311iZZ, respectively.

FIG. 6.

The quantum circuit to run the direct measurement method when n = 2. The B gate is prepared by the coefficients [1.195 77, 0.535 29]. V0 and V1 are applying e−0.09723iII and e−0.05311iZZ, respectively.

Close modal

We can also run a similar three-qubit circuit for (Hθ2) = Hθ2+Hθ4. The implementation of the circuit costs nine gates in the IBM quantum computers after circuit optimization. The resulting eigenenergies are in Table IV.

TABLE IV.

The complex eigenenergy obtained by directly diagonalizing the Hamiltonian, running simulators and running IBM quantum computers. The QASM simulator is configured to be noiseless, and it takes 105 samples to calculate the complex eigenenergy. The IBM quantum computer takes 213 samples. The error of the IBM quantum computer is from the best case.

MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1259 − 0.1107i 1.70 × 10−3 
IBM quantum computer 2.1624 − 0.1188i 0.0378 
MethodEigenenergy (hartree)Error (hartree)
Direct diagonalization 2.1259 − 0.1089i ⋯ 
Statevector simulator 2.1259 − 0.1089i 
QASM simulator 2.1259 − 0.1107i 1.70 × 10−3 
IBM quantum computer 2.1624 − 0.1188i 0.0378 

This section presents a proof of concept that by using our quantum algorithm, the direct measurement method, one can calculate molecular resonances on a quantum computer. We focus on the resonances of a simple diatomic molecule, H22Σu+(σg2σu). Moiseyev and Corcoran8 showed how to obtain this molecule’s resonance using a variational method based on the (5s, 3p, 1d/3s, 2p, 1d) contracted Gaussian atomic basis, which contains a total of 76 atomic orbitals for H2. They picked around 45 configurations of natural orbitals as a final basis for the resonance calculation. Here, however, we are not going to use their contracted Gaussian atomic basis that needs 76 system qubits with additional ancilla qubits, which is too large to be simulated by classical computers. The number of gates would also be overwhelming. One may try an iterative diagonalization approach to get a few eigenvalues without constructing matrices or vectors. Another possible solution could be using tensor network simulators. Recent studies by Ellerbrock and Martinez show that tensor network simulators are able to efficiently and accurately simulate over 100-qubit circuits with moderate entanglement.36 In another study, Zhou et al. showed that even strongly entangled systems (as those generated by 2D random circuits) can be simulated by matrix product states comparably accurate to modern quantum devices.37 However, building those simulators for our system is beyond the scope of this paper. In this way, we picked small basis sets, 6-31g and cc-pVDZ, for our simulations. We used the Born–Oppenheimer approximation followed by complex rotation, as shown in Sec. II, “COMPLEX-SCALED HAMILTONIAN” and mapped the Hamiltonian to the qubit space, as shown in  Appendix B. We then apply the direct measurement method to the Hamiltonian to obtain complex eigenvalues. An example quantum circuit to run the direct measurement method can be found in  Appendix E.

Figure 7 shows one complex eigenvalue’s θ trajectories at α = 1.00 under different basis sets after running the algorithm. Figure 7(a) is simulated using the 6-31g basis set. Eight spin orbitals are considered in our self-defined simulator, and 16 qubits are needed to run the algorithm. In this case, if we fix η = αe at the lowest point in the figure, which has α = 1.00, θ = 0.18, the resonance energy obtained by the direct measurement method is Eθ = −0.995 102 − 0.046 236i hartree. This complex energy is close to that obtained in Ref. 8, Eθ = −1.0995 − 0.0432i hartree, especially the imaginary part. Figure 7(b) is simulated using the cc-pVDZ basis set. We only considered the s and pz basis functions for H atoms for easier simulation. 12 spin orbitals are considered in our self-defined simulator, and a total of 23 qubits are needed to run the algorithm in quantum computers. The results show that the resonance energy at the lowest point in the figure, which has α = 1.00, θ = 0.22, is Eθ = −1.045 083 − 0.044 513i hartree. This is even closer to that obtained in Ref. 8. However, we want to note that the lowest points in Figs. 7(a) and 7(b) are not pause points. In addition, they do not reveal real resonance properties. Even after shifting different α in simulations, we cannot find a consistent pause point in θ trajectories to locate the best resonance estimation. The reason may be related to our selected basis. Compared with the literature,8 our basis set is much smaller and is not optimized for the resonance state. Still, this application gives a proof of concept and shows that one can calculate molecular resonances on a quantum computer. In the future, if more qubits are available in quantum computers, a large basis can be used, and we may be able to show finer structures in trajectories that can locate the best resonance point. In addition, a larger basis set should lead to a more accurate resonance calculation.

FIG. 7.

Complex eigenvalue trajectories on the rotation angle θ at α = 1.00 for molecule H2 calculated by a self-defined simulator. (a) uses the 6-31g basis set for H atoms, including 1s and 2s orbitals. θ ranges from 0.00 to 0.24 with a step of 0.02. At the lowest point when θ = 0.18, the complex eigenvalue is −0.995 102 − 0.046 236i hartree. (b) uses the s and pz orbitals in the cc-pVDZ basis set for H atoms. θ ranges from 0.00 to 0.28 with a step of 0.02. At the lowest point when θ = 0.22, the complex eigenvalue is −1.045 083 − 0.044 513i hartree.

FIG. 7.

Complex eigenvalue trajectories on the rotation angle θ at α = 1.00 for molecule H2 calculated by a self-defined simulator. (a) uses the 6-31g basis set for H atoms, including 1s and 2s orbitals. θ ranges from 0.00 to 0.24 with a step of 0.02. At the lowest point when θ = 0.18, the complex eigenvalue is −0.995 102 − 0.046 236i hartree. (b) uses the s and pz orbitals in the cc-pVDZ basis set for H atoms. θ ranges from 0.00 to 0.28 with a step of 0.02. At the lowest point when θ = 0.22, the complex eigenvalue is −1.045 083 − 0.044 513i hartree.

Close modal

In this paper, we construct and show a proof of concept for a quantum algorithm that calculates atomic and molecular resonances. We first presented the complex-scaling method to calculate molecular resonances. Then, we introduced the direct measurement method, which embeds a molecular system’s complex-rotated Hamiltonian into the quantum circuit and calculates the resonance energy and lifetime from the measurement results. These results represent the first applications of the complex-scaling Hamiltonian to molecular resonances on a quantum computer. The method is proven to be accurate when applied to a simple one-dimensional quantum system that exhibits shape resonances. We tested our algorithm on quantum simulators and IBM quantum computers. Furthermore, when compared to the exponential time complexity in traditional matrix-vector multiplication calculations, this method only requires O(n5) standard gates, where n is the size of the basis set. These findings show this method’s potential to be used in a more complicated molecular system and for better accuracy in the future when more and better qubit machines are available.

We would like to thank Rongxin Xia, Zixuan Hu, and Manas Sajjan for useful discussions. We also like to acknowledge financial support from the National Science Foundation under Award No. 1955907.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Table V shows an example of the model system's complex-rotated Hamiltonian.

TABLE V.

The coefficients and tensor product operators of the model system’s complex-rotated Hamiltonian Hθ at θ = 0.16, α = 0.65 when there is n = 5 basis functions.

YYIII −0.091 665 + 0.096 819i XXIII −0.091 665 + 0.096 819i IIIII 4.599 205 − 0.533 073i 
ZIIII −0.251 131 + 0.022 353i YZYII 0.017 915 6 − 0.030 997i XZXII 0.017 915 6 − 0.030 997i 
YZZYI −0.007 005 + 0.015 446i XZZXI −0.007 005 + 0.015 446i YZZZY 0.003 680 − 0.009 152i 
XZZZX 0.003 680 − 0.009 152i IZIII −1.063 280 + 0.032 614i IYYII −0.089 297 + 0.108 259i 
IXXII −0.089 297 + 0.108 259i IYZYI 0.014 213 − 0.055 870i IXZXI 0.014 213 − 0.055 870i 
IYZZY −0.003 869 + 0.033 693i IXZZX −0.003 869 + 0.033 693i IIZII −1.445 349 + 0.113 618i 
IIYYI −0.209 952 + 0.010 748i IIXXI −0.209 952 + 0.010 748i IIYZY 0.060 302 − 0.008 776j 
IIXZX 0.060 302 − 0.008 776i IIIZI −1.127 058 + 0.243 702i IIIYY −0.336 956 + 0.051 691i 
IIIXX −0.336 956 + 0.051 691i IIIIZ −0.712 385 + 0.120 784i   
YYIII −0.091 665 + 0.096 819i XXIII −0.091 665 + 0.096 819i IIIII 4.599 205 − 0.533 073i 
ZIIII −0.251 131 + 0.022 353i YZYII 0.017 915 6 − 0.030 997i XZXII 0.017 915 6 − 0.030 997i 
YZZYI −0.007 005 + 0.015 446i XZZXI −0.007 005 + 0.015 446i YZZZY 0.003 680 − 0.009 152i 
XZZZX 0.003 680 − 0.009 152i IZIII −1.063 280 + 0.032 614i IYYII −0.089 297 + 0.108 259i 
IXXII −0.089 297 + 0.108 259i IYZYI 0.014 213 − 0.055 870i IXZXI 0.014 213 − 0.055 870i 
IYZZY −0.003 869 + 0.033 693i IXZZX −0.003 869 + 0.033 693i IIZII −1.445 349 + 0.113 618i 
IIYYI −0.209 952 + 0.010 748i IIXXI −0.209 952 + 0.010 748i IIYZY 0.060 302 − 0.008 776j 
IIXZX 0.060 302 − 0.008 776i IIIZI −1.127 058 + 0.243 702i IIIYY −0.336 956 + 0.051 691i 
IIIXX −0.336 956 + 0.051 691i IIIIZ −0.712 385 + 0.120 784i   

Table VI shows an example of the H2 system's complex-rotated Hamiltonian.

TABLE VI.

The coefficients and tensor product operators in H2’s complex-rotated Hamiltonian at θ = 0.18, α = 1.00 when using the 6-31g basis set.

IXZXXZXI 0.018 705 − 0.003 404i IIIZIXZX 0.038 191 − 0.006 950i ZIZIIIII 0.103 932 − 0.018 913i 
XZXIXZXI 0.027 826 − 0.005 063i IXXIIIXX −0.002 794 + 0.000 508i IIZZIIII 0.106 657 − 0.019 408i 
IYIYIIII 0.024 307 − 0.004 423i IIIIXXXX 0.015 119 − 0.002 751i IZIIIIZI 0.095 226 − 0.017 328i 
IIIIIIXX 0.047 512 − 0.039 979i YYIIYZZY −0.019 254 + 0.003 504i XZXIYZYI 0.027 826 − 0.005 063i 
IZIIYZYI 0.013 080 − 0.002 380i IIYYIIXX 0.034 554 − 0.006 288i XZXIIIZI 0.032 587 − 0.005 930i 
YYYYIIII 0.015 119 − 0.002 751i XXIIIYYI 0.005 216 − 0.000 949i IXIXIIII 0.024 307 − 0.004 423i 
IIIIXXYY 0.002 918 − 0.000 531i IIIZXZXI 0.050 249 − 0.009 144i IIXXXXII 0.020 481 − 0.003 727i 
YYIIYYII 0.019 597 − 0.003 566i IXXIIXXI 0.008 283 − 0.001 507i IIIIXIXI 0.016 733 − 0.003 045i 
IYZYIIII −0.035 671 + 0.030 324i IYZYIIIZ 0.043 018 − 0.007 828i YYIIIYYI 0.005 216 − 0.000 949i 
IIIIXZZX −0.028 316 + 0.033 738i XXIIYYII 0.019 597 − 0.003 566i IXXIIIYY −0.002 794 + 0.000 508i 
ZYZYIIII 0.015 436 − 0.002 809i XXIIYZZY −0.019 254 + 0.003 504i IIIIIZZI 0.084 620 − 0.015 398i 
YZYIIZII 0.011 702 − 0.002 129i IIYYXZZX −0.031 698 + 0.005 768i IIIIIXXI −0.007 550 + 0.006 494i 
IXZXIZII 0.012 371 − 0.002 251i IIIIYYYY 0.015 119 − 0.002 751i IIIZYZYI 0.050 249 − 0.009 144i 
ZIIIIIII −0.230 405 + 0.108 639i ZIIIIIIZ 0.159 054 − 0.028 943i IXXIYZZY 0.006 593 − 0.001 200i 
IIIIIYIY 0.023 153 − 0.004 213i IIYYIXXI −0.000 541 + 0.000 098i YZZYIIII −0.027 204 + 0.031 862i 
IIIZIIZI 0.139 579 − 0.025 399i YZZYXXII −0.016 647 + 0.003 029i IIXXIIII 0.047 746 − 0.040 370i 
XIXIIIII 0.017 118 − 0.003 115i YYIIXXII 0.019 597 − 0.003 566i YZYIIYZY 0.017 127 − 0.003 117i 
IIIIZZII 0.084 496 − 0.015 376i YZZYXZZX 0.031 161 − 0.005 670i IIZIIYZY 0.024 717 − 0.004 498i 
XZZXIXXI 0.004 990 − 0.000 908i IYYIIYYI 0.008 283 − 0.001 507i IYZYIXZX 0.015 728 − 0.002 862i 
XZZXXZZX 0.031 161 − 0.005 670i IYZYIIZI 0.026 040 − 0.004 739i IIZIIZII 0.093 507 − 0.017 015i 
IZIIZIII 0.106 161 − 0.019 318i XXIIIXXI 0.005 216 − 0.000 949i IXZXIYZY 0.015 728 − 0.002 862i 
ZIIIIXZX 0.030 922 − 0.005 627i IIIIIIYY 0.047 512 − 0.039 979i XXIIIIYY 0.021 209 − 0.003 859i 
XXIIIIXX 0.021 209 − 0.003 859i YYIIIIII 0.001 646 − 0.022 572i ZIIIIIZI 0.130 169 − 0.023 687i 
IIYYIIYY 0.034 554 − 0.006 288i YZYIIIIZ 0.052 229 − 0.009 504i YZYIIIII −0.021 561 + 0.077 956i 
IIXXXZZX −0.031 698 + 0.005 768i IIIIZYZY 0.013 729 − 0.002 498i IYYIXXII 0.003 919 − 0.000 713i 
IIZIZIII 0.133 407 − 0.024 276i YZZYYZZY 0.031 161 − 0.005 670i XZXIZIII 0.040 337 − 0.007 340i 
ZIIIZIII 0.151 365 − 0.027 544i YZYIIXZX 0.017 127 − 0.003 117i IIIIYIYI 0.016 733 − 0.003 045i 
IIXXIYYI −0.000 541 + 0.000 098i IIYYYZZY −0.031 698 + 0.005 768i IYYIIIII −0.009 705 + 0.008 779i 
YZZYYYII −0.016 647 + 0.003 029i XZXIIXZX 0.017 127 − 0.003 117i IIIIIXIX 0.023 153 − 0.004 213i 
IIZIYZYI 0.033 580 − 0.006 110i ZXZXIIII 0.015 436 − 0.002 809i YZYZIIII 0.020 644 − 0.003 757i 
IIIIYZZY −0.028 316 + 0.033 738i IXZXZIII 0.034 152 − 0.006 215i YZZYIYYI 0.004 990 − 0.000 908i 
ZIIZIIII 0.126 456 − 0.023 011i YZZYIIXX −0.029 557 + 0.005 379i XZZXYZZY 0.031 161 − 0.005 670i 
IYYIIIYY −0.002 794 + 0.000 508i IXZXIIII −0.035 671 + 0.030 324i IXZXIIIZ 0.043 018 − 0.007 828i 
ZIIIYZYI 0.038 659 − 0.007 035i IIXXIIXX 0.034 554 − 0.006 288i ZZIIIIII 0.085 046 − 0.015 476i 
IIIZZIII 0.158 431 − 0.028 830i YXXYIIII 0.012 162 − 0.002 213i IZIIIYZY 0.013 159 − 0.002 395i 
IYZYXZXI 0.018 705 − 0.003 404i XXIIXXII 0.019 597 − 0.003 566i IIIIYXXY 0.012 201 − 0.002 220i 
IIIIZIII −0.231 557 + 0.112 195i IIIIZIIZ 0.128 680 − 0.023 416i YZYIXZXI 0.027 826 − 0.005 063i 
IIYYYYII 0.020 481 − 0.003 727i IIIIXZXZ 0.020 604 − 0.003 749i IIIIXZXI −0.030 067 + 0.081 498i 
IIYYIYYI −0.000 541 + 0.000 098i IYYIYZZY 0.006 593 − 0.001 200i YZYIYZYI 0.027 826 − 0.005 063i 
IIZIXZXI 0.033 580 − 0.006 110i IIXXYZZY −0.031 698 + 0.005 768i IIIIIIZI −0.611 815 + 0.267 480i 
IIIIIIZZ 0.107 859 − 0.019 627i YZZYIXXI 0.004 990 − 0.000 908i IIIIIXZX −0.012 982 + 0.018 373i 
XXIXXII 0.003 919 − 0.000 713i IIZIIIII −0.612 966 + 0.271 036i XZXIIYZY 0.017 127 − 0.003 117i 
IIXXIXXI −0.000 541 + 0.000 098i IIIIYYII 0.000 598 − 0.021 276i YYIIIIXX 0.021 209 − 0.003 859i 
XZZXYYII −0.016 647 + 0.003 029i XZXZIIII 0.020 644 − 0.003 757i YZZYIIYY −0.029 557 + 0.005 379i 
YYXXIIII 0.002 957 − 0.000 538i YZYIIIZI 0.032 587 − 0.005 930i IIXXYYII 0.020 481 − 0.003 727i 
IXZXIXZX 0.015 728 − 0.002 862i IXZXIIZI 0.026 040 − 0.004 739i XYYXIIII 0.012 162 − 0.002 213i 
ZIIIXZXI 0.038 659 − 0.007 035i IIXXIIYY 0.034 554 − 0.006 288i YYIIIIYY 0.021 209 − 0.003 859i 
IZZIIIII 0.087 497 − 0.015 922i IZIIIZII 0.094 105 − 0.017 124i IIYYXXII 0.020 481 − 0.003 727i 
IIIZIYZY 0.038 191 − 0.006 950i IYYIIIXX −0.002 794 + 0.000 508i IXXIXZZX 0.006 593 − 0.001 200i 
IIIIZXZX 0.013 729 − 0.002 498i IIIIIYYI −0.007 550 + 0.006 494i IIIIZIZI 0.103 932 − 0.018 913i 
YYIIXZZX −0.019 254 + 0.003 504i IXXIIIII −0.009 705 + 0.008 779i IIIIXXII 0.000 598 − 0.021 276i 
XZZXIYYI 0.004 990 − 0.000 908i IZIIIIIZ 0.110 454 − 0.020 099i IZIIIIII −0.388 873 + 0.102 313i 
IYZYIZII 0.012 371 − 0.002 251i IXXIIYYI 0.008 283 − 0.001 507i IYYIYYII 0.003 919 − 0.000 713i 
YYIIIXXI 0.005 216 − 0.000 949i XXYYIIII 0.002 957 − 0.000 538i IXXIYYII 0.003 919 − 0.000 713i 
IIIIYZYZ 0.020 604 − 0.003 749i IIIIYZYI −0.030 067 + 0.081 498i IYZYIYZY 0.015 728 − 0.002 862i 
IZIIXZXI 0.013 080 − 0.002 380i IIIIIIII 1.734 311 − 1.110 499i IIIIIIIZ −0.896 247 + 0.369 556i 
IIZIIXZX 0.024 717 − 0.004 498i IZIIIXZX 0.013 159 − 0.002 395i IIZIIIZI 0.120 598 − 0.021 945i 
XZZXIIYY −0.029 557 + 0.005 379i IIIIXYYX 0.012 201 − 0.002 220i IYZYZIII 0.034 152 − 0.006 215i 
IIYYIIII 0.047 746 − 0.040 370i IXZXYZYI 0.018 705 − 0.003 404i XZXIIIIZ 0.052 229 − 0.009 504i 
XZXIIIII −0.021 561 + 0.077 956i XZZXXXII −0.016 647 + 0.003 029i ZIIIIYZY 0.030 922 − 0.005 627i 
YIYIIIII 0.017 118 − 0.003 115i IYYIXZZX 0.006 593 − 0.001 200i XZZXIIII −0.027 204 + 0.031 862i 
IIIIIYZY −0.012 982 + 0.018 373i XXIIXZZX −0.019 254 + 0.003 504i XZXIIZII 0.011 702 − 0.002 129i 
ZIIIIZII 0.102 700 − 0.018 688i IIIIIZIZ 0.092 214 − 0.016 780i IIIIIZII −0.386 698 + 0.100 135i 
IYYIIXXI 0.008 283 − 0.001 507i IIIZIZII 0.105 681 − 0.019 231i XXIIIIII 0.001 646 − 0.022 572i 
IIIIYYXX 0.002 918 − 0.000 531i IZIZIIII 0.092 214 − 0.016 780i YZYIZIII 0.040 337 − 0.007 340i 
XXXXIIII 0.015 119 − 0.002 751i XZZXIIXX −0.029 557 + 0.005 379i IIIZIIIZ 0.184 425 − 0.033 560i 
IIIZIIII −0.894 071 + 0.367 379i IIZIIIIZ 0.144 136 − 0.026 228i IYZYYZYI 0.018 705 − 0.003 404i 
IXZXXZXI 0.018 705 − 0.003 404i IIIZIXZX 0.038 191 − 0.006 950i ZIZIIIII 0.103 932 − 0.018 913i 
XZXIXZXI 0.027 826 − 0.005 063i IXXIIIXX −0.002 794 + 0.000 508i IIZZIIII 0.106 657 − 0.019 408i 
IYIYIIII 0.024 307 − 0.004 423i IIIIXXXX 0.015 119 − 0.002 751i IZIIIIZI 0.095 226 − 0.017 328i 
IIIIIIXX 0.047 512 − 0.039 979i YYIIYZZY −0.019 254 + 0.003 504i XZXIYZYI 0.027 826 − 0.005 063i 
IZIIYZYI 0.013 080 − 0.002 380i IIYYIIXX 0.034 554 − 0.006 288i XZXIIIZI 0.032 587 − 0.005 930i 
YYYYIIII 0.015 119 − 0.002 751i XXIIIYYI 0.005 216 − 0.000 949i IXIXIIII 0.024 307 − 0.004 423i 
IIIIXXYY 0.002 918 − 0.000 531i IIIZXZXI 0.050 249 − 0.009 144i IIXXXXII 0.020 481 − 0.003 727i 
YYIIYYII 0.019 597 − 0.003 566i IXXIIXXI 0.008 283 − 0.001 507i IIIIXIXI 0.016 733 − 0.003 045i 
IYZYIIII −0.035 671 + 0.030 324i IYZYIIIZ 0.043 018 − 0.007 828i YYIIIYYI 0.005 216 − 0.000 949i 
IIIIXZZX −0.028 316 + 0.033 738i XXIIYYII 0.019 597 − 0.003 566i IXXIIIYY −0.002 794 + 0.000 508i 
ZYZYIIII 0.015 436 − 0.002 809i XXIIYZZY −0.019 254 + 0.003 504i IIIIIZZI 0.084 620 − 0.015 398i 
YZYIIZII 0.011 702 − 0.002 129i IIYYXZZX −0.031 698 + 0.005 768i IIIIIXXI −0.007 550 + 0.006 494i 
IXZXIZII 0.012 371 − 0.002 251i IIIIYYYY 0.015 119 − 0.002 751i IIIZYZYI 0.050 249 − 0.009 144i 
ZIIIIIII −0.230 405 + 0.108 639i ZIIIIIIZ 0.159 054 − 0.028 943i IXXIYZZY 0.006 593 − 0.001 200i 
IIIIIYIY 0.023 153 − 0.004 213i IIYYIXXI −0.000 541 + 0.000 098i YZZYIIII −0.027 204 + 0.031 862i 
IIIZIIZI 0.139 579 − 0.025 399i YZZYXXII −0.016 647 + 0.003 029i IIXXIIII 0.047 746 − 0.040 370i 
XIXIIIII 0.017 118 − 0.003 115i YYIIXXII 0.019 597 − 0.003 566i YZYIIYZY 0.017 127 − 0.003 117i 
IIIIZZII 0.084 496 − 0.015 376i YZZYXZZX 0.031 161 − 0.005 670i IIZIIYZY 0.024 717 − 0.004 498i 
XZZXIXXI 0.004 990 − 0.000 908i IYYIIYYI 0.008 283 − 0.001 507i IYZYIXZX 0.015 728 − 0.002 862i 
XZZXXZZX 0.031 161 − 0.005 670i IYZYIIZI 0.026 040 − 0.004 739i IIZIIZII 0.093 507 − 0.017 015i 
IZIIZIII 0.106 161 − 0.019 318i XXIIIXXI 0.005 216 − 0.000 949i IXZXIYZY 0.015 728 − 0.002 862i 
ZIIIIXZX 0.030 922 − 0.005 627i IIIIIIYY 0.047 512 − 0.039 979i XXIIIIYY 0.021 209 − 0.003 859i 
XXIIIIXX 0.021 209 − 0.003 859i YYIIIIII 0.001 646 − 0.022 572i ZIIIIIZI 0.130 169 − 0.023 687i 
IIYYIIYY 0.034 554 − 0.006 288i YZYIIIIZ 0.052 229 − 0.009 504i YZYIIIII −0.021 561 + 0.077 956i 
IIXXXZZX −0.031 698 + 0.005 768i IIIIZYZY 0.013 729 − 0.002 498i IYYIXXII 0.003 919 − 0.000 713i 
IIZIZIII 0.133 407 − 0.024 276i YZZYYZZY 0.031 161 − 0.005 670i XZXIZIII 0.040 337 − 0.007 340i 
ZIIIZIII 0.151 365 − 0.027 544i YZYIIXZX 0.017 127 − 0.003 117i IIIIYIYI 0.016 733 − 0.003 045i 
IIXXIYYI −0.000 541 + 0.000 098i IIYYYZZY −0.031 698 + 0.005 768i IYYIIIII −0.009 705 + 0.008 779i 
YZZYYYII −0.016 647 + 0.003 029i XZXIIXZX 0.017 127 − 0.003 117i IIIIIXIX 0.023 153 − 0.004 213i 
IIZIYZYI 0.033 580 − 0.006 110i ZXZXIIII 0.015 436 − 0.002 809i YZYZIIII 0.020 644 − 0.003 757i 
IIIIYZZY −0.028 316 + 0.033 738i IXZXZIII 0.034 152 − 0.006 215i YZZYIYYI 0.004 990 − 0.000 908i 
ZIIZIIII 0.126 456 − 0.023 011i YZZYIIXX −0.029 557 + 0.005 379i XZZXYZZY 0.031 161 − 0.005 670i 
IYYIIIYY −0.002 794 + 0.000 508i IXZXIIII −0.035 671 + 0.030 324i IXZXIIIZ 0.043 018 − 0.007 828i 
ZIIIYZYI 0.038 659 − 0.007 035i IIXXIIXX 0.034 554 − 0.006 288i ZZIIIIII 0.085 046 − 0.015 476i 
IIIZZIII 0.158 431 − 0.028 830i YXXYIIII 0.012 162 − 0.002 213i IZIIIYZY 0.013 159 − 0.002 395i 
IYZYXZXI 0.018 705 − 0.003 404i XXIIXXII 0.019 597 − 0.003 566i IIIIYXXY 0.012 201 − 0.002 220i 
IIIIZIII −0.231 557 + 0.112 195i IIIIZIIZ 0.128 680 − 0.023 416i YZYIXZXI 0.027 826 − 0.005 063i 
IIYYYYII 0.020 481 − 0.003 727i IIIIXZXZ 0.020 604 − 0.003 749i IIIIXZXI −0.030 067 + 0.081 498i 
IIYYIYYI −0.000 541 + 0.000 098i IYYIYZZY 0.006 593 − 0.001 200i YZYIYZYI 0.027 826 − 0.005 063i 
IIZIXZXI 0.033 580 − 0.006 110i IIXXYZZY −0.031 698 + 0.005 768i IIIIIIZI −0.611 815 + 0.267 480i 
IIIIIIZZ 0.107 859 − 0.019 627i YZZYIXXI 0.004 990 − 0.000 908i IIIIIXZX −0.012 982 + 0.018 373i 
XXIXXII 0.003 919 − 0.000 713i IIZIIIII −0.612 966 + 0.271 036i XZXIIYZY 0.017 127 − 0.003 117i 
IIXXIXXI −0.000 541 + 0.000 098i IIIIYYII 0.000 598 − 0.021 276i YYIIIIXX 0.021 209 − 0.003 859i 
XZZXYYII −0.016 647 + 0.003 029i XZXZIIII 0.020 644 − 0.003 757i YZZYIIYY −0.029 557 + 0.005 379i 
YYXXIIII 0.002 957 − 0.000 538i YZYIIIZI 0.032 587 − 0.005 930i IIXXYYII 0.020 481 − 0.003 727i 
IXZXIXZX 0.015 728 − 0.002 862i IXZXIIZI 0.026 040 − 0.004 739i XYYXIIII 0.012 162 − 0.002 213i 
ZIIIXZXI 0.038 659 − 0.007 035i IIXXIIYY 0.034 554 − 0.006 288i YYIIIIYY 0.021 209 − 0.003 859i 
IZZIIIII 0.087 497 − 0.015 922i IZIIIZII 0.094 105 − 0.017 124i IIYYXXII 0.020 481 − 0.003 727i 
IIIZIYZY 0.038 191 − 0.006 950i IYYIIIXX −0.002 794 + 0.000 508i IXXIXZZX 0.006 593 − 0.001 200i 
IIIIZXZX 0.013 729 − 0.002 498i IIIIIYYI −0.007 550 + 0.006 494i IIIIZIZI 0.103 932 − 0.018 913i 
YYIIXZZX −0.019 254 + 0.003 504i IXXIIIII −0.009 705 + 0.008 779i IIIIXXII 0.000 598 − 0.021 276i 
XZZXIYYI 0.004 990 − 0.000 908i IZIIIIIZ 0.110 454 − 0.020 099i IZIIIIII −0.388 873 + 0.102 313i 
IYZYIZII 0.012 371 − 0.002 251i IXXIIYYI 0.008 283 − 0.001 507i IYYIYYII 0.003 919 − 0.000 713i 
YYIIIXXI 0.005 216 − 0.000 949i XXYYIIII 0.002 957 − 0.000 538i IXXIYYII 0.003 919 − 0.000 713i 
IIIIYZYZ 0.020 604 − 0.003 749i IIIIYZYI −0.030 067 + 0.081 498i IYZYIYZY 0.015 728 − 0.002 862i 
IZIIXZXI 0.013 080 − 0.002 380i IIIIIIII 1.734 311 − 1.110 499i IIIIIIIZ −0.896 247 + 0.369 556i 
IIZIIXZX 0.024 717 − 0.004 498i IZIIIXZX 0.013 159 − 0.002 395i IIZIIIZI 0.120 598 − 0.021 945i 
XZZXIIYY −0.029 557 + 0.005 379i IIIIXYYX 0.012 201 − 0.002 220i IYZYZIII 0.034 152 − 0.006 215i 
IIYYIIII 0.047 746 − 0.040 370i IXZXYZYI 0.018 705 − 0.003 404i XZXIIIIZ 0.052 229 − 0.009 504i 
XZXIIIII −0.021 561 + 0.077 956i XZZXXXII −0.016 647 + 0.003 029i ZIIIIYZY 0.030 922 − 0.005 627i 
YIYIIIII 0.017 118 − 0.003 115i IYYIXZZX 0.006 593 − 0.001 200i XZZXIIII −0.027 204 + 0.031 862i 
IIIIIYZY −0.012 982 + 0.018 373i XXIIXZZX −0.019 254 + 0.003 504i XZXIIZII 0.011 702 − 0.002 129i 
ZIIIIZII 0.102 700 − 0.018 688i IIIIIZIZ 0.092 214 − 0.016 780i IIIIIZII −0.386 698 + 0.100 135i 
IYYIIXXI 0.008 283 − 0.001 507i IIIZIZII 0.105 681 − 0.019 231i XXIIIIII 0.001 646 − 0.022 572i 
IIIIYYXX 0.002 918 − 0.000 531i IZIZIIII 0.092 214 − 0.016 780i YZYIZIII 0.040 337 − 0.007 340i 
XXXXIIII 0.015 119 − 0.002 751i XZZXIIXX −0.029 557 + 0.005 379i IIIZIIIZ 0.184 425 − 0.033 560i 
IIIZIIII −0.894 071 + 0.367 379i IIZIIIIZ 0.144 136 − 0.026 228i IYZYYZYI 0.018 705 − 0.003 404i 

If the output state equation (17) is measured many times, the possibility of obtaining the 0a state, p, is related to E by the following equation:

(C1)

which reveals |E|=pA. To obtain the phase, one way is that we apply a similar circuit for Hθ=xIn+Hθ, where x is a selected real number. Then, the updated Ur′ leads us to

(C2)

By applying |E|=pA to Eq. (C2), we can solve the phase φ and finally the complex eigenvalue as

(C3)

If we expand the exponential term in Eq. (C3), it becomes

(C4)

Since the measurement errors for p and p′, i.e., Δ(p) and Δp′, are O(1N), based on Eq. (C4), the error for the complex eigenvalue Ee is

(C5)

The larger the sampling size, the more accurate the obtained complex eigenvalues are.

There are also other choices to obtain the phase. For example, instead of adding the In part, we can try building Ur′ based on Hθ+Hθ2 or Hθ+Hθ3 to get an equation such as Eq. (C2) containing phase information. This equation together with Eq. (C1) will reveal the complex eigenvalue for the input eigenstate with another expression.

1. n = 2 basis functions, 5 qubits

The complex-rotated Hamiltonian of the model system is

(D1)

By running the circuit shown in Fig. 4 for Hθ and a similar circuit for Hθ=xII+Hθ, the complex eigenvalue can be derived by

(D2)

where A and A′ can be obtained from the absolute value of coefficients in Hθ and Hθ and p and p′ can be obtained from the measurement results.

2. n = 2 basis functions, 4 qubits

The complex-rotated Hamiltonian of the model system without the II term is

(D3)

If we choose Hθ=Hθ+Hθ3, which has the same terms of tensor products as Hθ with different coefficients, by running Fig. 5, the complex eigenvalue for the original Hamiltonian can be represented by

(D4)

or

(D5)

where A and A′ can be obtained from the absolute value of coefficients in Hθ and Hθ and p and p′ can be obtained from the measurement results.

3. n = 2 basis functions, 3 qubits

The square of the Hamiltonian in Eq. (D3) is

(D6)

If we choose (Hθ2)=Hθ2+Hθ4, by running Fig. 6, the complex eigenvalue for the original Hamiltonian is

(D7)

or

(D8)

where A and A′ can be obtained from the absolute value of coefficients in Hθ2 and Hθ2+Hθ4 and p and p′ can be obtained from their measurement results.

The complex-scaled Hamiltonian of H2 at θ = 0.18, α = 1.00 in  Appendix B can be written as

(E1)

We would like to mention that the terms explicitly shown in Eq. (E1) are following the order in  Appendix B. It is a coincident that their phases are similar. For example, one term we did not show in the Hamiltonian is 0.021 284 * e1.542696iIIIIYYII, which has a different phase.

To construct the quantum circuit for the direct measurement method, we need to create the B gate and V gate. The B gate can be prepared by the coefficients from the Hamiltonian in Eq. (E1),

(E2)

as shown in Eq. (15). The V gate can be constructed by a series of controlled-Vi gates, where Vi are

(E3)

The whole circuit is shown in Fig. 8. The encoding of control qubits is based on the binary form of Vi’s index i. For example, V3 is applied to ψs if the ancilla qubit state is 3a=00000011a.

FIG. 8.

The quantum circuit to run the direct measurement method for H2 when θ = 0.18, α = 1.00. The B gate can be prepared by β in Eq. (E2). Vi gates are listed in Eq. (E3).

FIG. 8.

The quantum circuit to run the direct measurement method for H2 when θ = 0.18, α = 1.00. The B gate can be prepared by β in Eq. (E2). Vi gates are listed in Eq. (E3).

Close modal
1.
W. P.
Reinhardt
, “
Complex coordinates in the theory of atomic and molecular structure and dynamics
,”
Annu. Rev. Phys. Chem.
33
,
223
255
(
1982
).
2.
J.
Aguilar
and
J. M.
Combes
, “
A class of analytic perturbations for one-body Schrödinger Hamiltonians
,”
Commun. Math. Phys.
22
,
269
279
(
1971
).
3.
E.
Balslev
and
J. M.
Combes
, “
Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions
,”
Commun. Math. Phys.
22
,
280
294
(
1971
).
4.
B.
Simon
, “
Quadratic form techniques and the Balslev-Combes theorem
,”
Commun. Math. Phys.
27
,
1
9
(
1972
).
5.
B.
Simon
, “
Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory
,”
Ann. Math.
97
,
247
274
(
1973
).
6.
C.
van Winter
, “
Complex dynamical variables for multiparticle systems with analytic interactions. I
,”
J. Math. Anal. Appl.
47
,
633
670
(
1974
).
7.
N.
Moiseyev
, “
Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling
,”
Phys. Rep.
302
,
212
293
(
1998
).
8.
N.
Moiseyev
and
C.
Corcoran
, “
Autoionizing states of H2 and H2 using the complex-scaling method
,”
Phys. Rev. A
20
,
814
(
1979
).
9.
A.
Emmanouilidou
and
L. E.
Reichl
, “
Scattering properties of an open quantum system
,”
Phys. Rev. A
62
,
022709
(
2000
).
10.
Y.
Orimo
,
T.
Sato
,
A.
Scrinzi
, and
K. L.
Ishikawa
, “
Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method
,”
Phys. Rev. A
97
,
023423
(
2018
).
11.
T.-C.
Jagau
, “
Coupled-cluster treatment of molecular strong-field ionization
,”
J. Chem. Phys.
148
,
204102
(
2018
).
12.
I.
Haritan
and
N.
Moiseyev
, “
On the calculation of resonances by analytic continuation of eigenvalues from the stabilization graph
,”
J. Chem. Phys.
147
,
014101
(
2017
).
13.
A.
Landau
,
A.
Ben-Asher
,
K.
Gokhberg
,
L. S.
Cederbaum
, and
N.
Moiseyev
, “
Ab initio complex potential energy curves of the He*(1s2p1p)–Li dimer
,”
J. Chem. Phys.
152
,
184303
(
2020
).
14.
D.
Bhattacharya
,
A.
Landau
, and
N.
Moiseyev
, “
Ab initio complex transition dipoles between autoionizing resonance states from real stabilization graphs
,”
J. Phys. Chem. Lett.
11
,
5601
5609
(
2020
).
15.
A.
Pick
,
P. R.
Kaprálová-Žďánská
, and
N.
Moiseyev
, “
Ab-initio theory of photoionization via resonances
,”
J. Chem. Phys.
150
,
204111
(
2019
).
16.
N.
Moiseyev
,
P. R.
Certain
, and
F.
Weinhold
, “
Complex-coordinate studies of helium autoionizing resonances
,”
Int. J. Quantum Chem.
14
,
727
736
(
1978
).
17.
S.
Kais
and
D. R.
Herschbach
, “
Dimensional scaling for quasistationary states
,”
J. Chem. Phys.
98
,
3990
3998
(
1993
).
18.
T. C.
Germann
and
S.
Kais
, “
Large order dimensional perturbation theory for complex energy eigenvalues
,”
J. Chem. Phys.
99
,
7739
7747
(
1993
).
19.
S.
Kais
,
Quantum Information and Computation for Chemistry
, Advances in Chemical Physics Vol. 154 (
Wiley Online Library
,
NJ
,
2014
), p.
224109
.
20.
R.
Xia
and
S.
Kais
, “
Quantum machine learning for electronic structure calculations
,”
Nat. Commun.
9
,
4195
(
2018
).
21.
T.
Bian
,
D.
Murphy
,
R.
Xia
,
A.
Daskin
, and
S.
Kais
, “
Quantum computing methods for electronic states of the water molecule
,”
Mol. Phys.
117
,
2069
2082
(
2019
).
22.
A.
Daskin
,
T.
Bian
,
R.
Xia
, and
S.
Kais
, “
Context-aware quantum simulation of a matrix stored in quantum memory
,”
Quantum Inf. Process.
18
,
357
(
2019
).
23.
R.
Xia
,
T.
Bian
, and
S.
Kais
, “
Electronic structure calculations and the Ising Hamiltonian
,”
J. Phys. Chem. B
122
,
3384
3395
(
2017
).
24.
S.
Lloyd
, “
Universal quantum simulators
,”
Science
273
,
1073
1078
(
1996
).
25.
A.
Daskin
,
A.
Grama
, and
S.
Kais
, “
A universal quantum circuit scheme for finding complex eigenvalues
,”
Quantum Inf. Process.
13
,
333
353
(
2014
).
26.
G.
Aleksandrowicz
 et al., “
Qiskit: An open-source framework for quantum computing
,” (accessed on March 16, 2019).
27.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
(
Cambridge University Press
,
2011
).
28.
N.
Moiseyev
,
P. R.
Certain
, and
F.
Weinhold
, “
Resonance properties of complex-rotated Hamiltonians
,”
Mol. Phys.
36
,
1613
1630
(
1978
).
29.
G. D.
Doolen
, “
A procedure for calculating resonance eigenvalues
,”
J. Phys. B: At. Mol. Phys.
8
,
525
(
1975
).
30.
J. T.
Seeley
,
M. J.
Richard
, and
P. J.
Love
, “
The Bravyi-Kitaev transformation for quantum computation of electronic structure
,”
J. Chem. Phys.
137
,
224109
(
2012
).
31.
P. J. J.
O’Malley
,
R.
Babbush
,
I. D.
Kivlichan
,
J.
Romero
,
J. R.
McClean
,
R.
Barends
,
J.
Kelly
,
P.
Roushan
,
A.
Tranter
,
N.
Ding
 et al., “
Scalable quantum simulation of molecular energies
,”
Phys. Rev. X
6
,
031007
(
2016
).
32.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
,
1704
1707
(
2005
).
33.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
 et al., “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
10915
(
2019
).
34.
J.
McClean
,
N.
Rubin
,
K.
Sung
,
I.
David Kivlichan
,
X.
Bonet-Monroig
,
Y.
Cao
,
C.
Dai
,
E. S.
Fried
,
G.
Gidney
,
B.
Gimby
 et al., “
OpenFermion: The electronic structure package for quantum computers
,”
Quantum Sci. Technol.
5
,
034014
(
2020
).
35.
A.
Daskin
and
S.
Kais
, “
Direct application of the phase estimation algorithm to find the eigenvalues of the Hamiltonians
,”
Chem. Phys.
514
,
87
94
(
2018
).
36.
R.
Ellerbrock
and
T. J.
Martinez
, “
A multilayer multi-configurational approach to efficiently simulate large-scale circuit-based quantum computers on classical machines
,”
J. Chem. Phys.
153
,
051101
(
2020
).
37.
Y.
Zhou
,
E.
Miles Stoudenmire
, and
X.
Waintal
, “
What limits the simulation of quantum computers?
,”
Phys. Rev. X
10
,
041038
(
2020
).