Over the past several decades, since their reappearance in the literature, ionic liquids have progressed from being a curiosity to one of the most studied materials in physical sciences today. This tremendous attention from researchers across many fields arises from emerging applications of ionic liquids in synthesis (templated nanomaterial synthesis, biowaste processing), engineering (lubrication, damping, heat transfer), and electrochemical devices (batteries, supercapacitors), amongst others. As these applications mature, the need for detailed understanding and predictive capability becomes progressively more important. Responding to this need, a great deal of effort is now being invested in resolving molecular-scale details of structure, dynamics, and interactions in ionic liquids. This chemical physics of ionic liquids is a rich and diverse field, employing many experimental and theoretical approaches and extending its reach toward understanding a widening array of ionic materials.

Complexity of the molecular structures, dynamic relaxations, and interactions in ionic liquids provides a challenge for the techniques and theories typically applied to the liquid state. To this end, a full and clear picture emerges only with a concerted effort, involving all available tools of which many are represented in this special topic. Theoretical advances include the application of dressed ion theory to systems of high ion density for interpreting electrostatic interaction screening1 and density functional theory applied to the (asymmetric) restricted primitive model electrolyte.2 Experimental work here showcases a wide range of techniques such x-ray scattering,3,4 IR spectroscopy,5 dielectric spectroscopy,6,7 and others.8,44,45 Computer simulations cover the spectrum from full quantum mechanical9 to coarse-grained molecular dynamics10,11 and lattice Coulomb gas12 and include the development of robust force fields appropriate for ionic liquids.13 

The conceptual boundaries of the field of ionic liquids have expanded in several directions in recent years, with the tools developed during the past decade to probe and understand pure ionic liquids now being applied to a range of systems that have in common a high density of ions. Many examples are featured in this special topic, including studies of ionic liquid mixtures,5 poly-ionic liquids,10 deep eutectic solvents,14 solvate ionic liquids,15 zwitterionic liquids,16 and mixtures of ionic liquids with polymers,17 with salts,18,19,46 or with molecular solvents.20,21,47

Papers in this special topic demonstrate the interest in ionic liquids at interfaces and in confined geometries as well as the bulk fluid. Bulk ionic liquids are investigated for both equilibrium and dynamic properties.20,22–26 Interfacial properties are particularly relevant for many applications, for example, electrochemical energy storage where the nature of the electrical double layer in ionic liquids and related materials is of particular interest. To this end, papers here discuss the structure and electrochemical properties of electrode-ionic liquid interfaces,27–30 the electrostatic coupling between ions near and on opposite sides of a graphene electrode,31 the ionic liquids in nano-confinement,32 and a method to probe ionic re-arrangements near a voltage-controlled gold electrode.33 

Many fundamental studies of ionic liquids are included in the special topic, alongside several directed at particular applications. Papers of broad and general relevance investigate features such as heterogeneity in the bulk liquid,34,35 speciation in protic ionic liquids and complex mixtures, solvation dynamics,36–38 conductivity,23 electronic structure,39,40 and phase behavior.41 More applied contributions aim at solving problems relevant to battery electrolytes,15,18,31 protein solvation,42,48 synthesis of nanomaterials,3,43 and biowaste extraction.16 

Overall, this special topic brings together an exciting collection of articles representing the vigorous current activity in the chemical physics of ionic liquids. Many leading experimental and theoretical groups are represented among the authors as well as young investigators recently entering the field. We are delighted to present this special topic in the Journal of Chemical Physics and hope that newcomers to the field and experienced contributors alike will find interest and inspiration from the articles collected here.

1.
R.
Kjellander
, “
Focus article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges
,”
J. Chem. Phys.
148
,
193701
(
2018
).
2.
H.
Lu
,
S.
Nordholm
,
C. E.
Woodward
, and
J.
Forsman
, “
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
,”
J. Chem. Phys.
148
,
193814
(
2018
).
3.
Y.
Kim
,
B.
Heyne
,
A.
Abouserie
,
C.
Pries
,
C.
Ippen
,
C.
Günter
,
A.
Taubert
, and
A.
Wedel
, “
Cus nanoplates from ionic liquid precursors—Application in organic photovoltaic cells
,”
J. Chem. Phys.
148
,
193818
(
2018
).
4.
F. L.
Celso
,
G. B.
Appetecchi
,
C. J.
Jafta
,
L.
Gontrani
,
J. N. C.
Lopes
,
A.
Triolo
, and
O.
Russina
, “
Nanoscale organization in the fluorinated room temperature ionic liquid: Tetraethyl ammonium (trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide
,”
J. Chem. Phys.
148
,
193816
(
2018
).
5.
S.
Cha
and
D.
Kim
, “
Change of hydrogen bonding structure in ionic liquid mixtures by anion type
,”
J. Chem. Phys.
148
,
193827
(
2018
).
6.
T.
Cosby
,
Z.
Vicars
,
M.
Heres
,
K.
Tsunashima
, and
J.
Sangoro
, “
Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids
,”
J. Chem. Phys.
148
,
193815
(
2018
).
7.
T.
Cosby
,
Z.
Vicars
,
E. U.
Mapesa
,
K.
Tsunashima
, and
J.
Sangoro
, “
Charge transport and dipolar relaxations in phosphonium-based ionic liquids
,”
J. Chem. Phys.
147
,
234504
(
2017
).
8.
S.
Kakinuma
,
S.
Ramati
,
J. F.
Wishart
, and
H.
Shirota
, “
Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum
,”
J. Chem. Phys.
148
,
193805
(
2018
).
9.
M.
Brehm
and
D.
Sebastiani
, “
Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate
,”
J. Chem. Phys.
148
,
193802
(
2018
).
10.
A.
Weyman
,
M.
Bier
,
C.
Holm
, and
J.
Smiatek
, “
Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study
,”
J. Chem. Phys.
148
,
193824
(
2018
).
11.
B. S.
Jabes
,
C.
Krekeler
,
R.
Klein
, and
L. D.
Site
, “
Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique
,”
J. Chem. Phys.
148
,
193804
(
2018
).
12.
M.
Girotto
,
R. M.
Malossi
,
A. P.
dos Santos
, and
Y.
Levin
, “
Lattice model of ionic liquid confined by metal electrodes
,”
J. Chem. Phys.
148
,
193829
(
2018
).
13.
J.
Neumann
,
B.
Golub
,
L.-M.
Odebrecht
,
R.
Ludwig
, and
D.
Paschek
, “
Revisiting imidazolium based ionic liquids: Effect of the conformation bias of the [ntf2] anion studied by molecular dynamics simulations
,”
J. Chem. Phys.
148
,
193828
(
2018
).
14.
M.
Gilmore
,
L. M.
Moura
,
A. H.
Turner
,
M.
Swadźba-Kwaśny
,
S. K.
Callear
,
J. A.
McCune
,
O. A.
Scherman
, and
J. D.
Holbrey
, “
A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 k
,”
J. Chem. Phys.
148
,
193823
(
2018
).
15.
W.
Shinoda
,
Y.
Hatanaka
,
M.
Hirakawa
,
S.
Okazaki
,
S.
Tsuzuki
,
K.
Ueno
, and
M.
Watanabe
, “
Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids
,”
J. Chem. Phys.
148
,
193809
(
2018
).
16.
B.
Wu
,
K.
Kuroda
,
K.
Takahashi
, and
E. W.
Castner
, Jr.
, “
Structural analysis of zwitterionic liquids vs. homologous ionic liquids
,”
J. Chem. Phys.
148
,
193807
(
2018
).
17.
R.
Stefanovic
,
G. B.
Webber
, and
A. J.
Page
, “
Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts
,”
J. Chem. Phys.
148
,
193826
(
2018
).
18.
F.
Chen
,
R.
Kerr
, and
M.
Forsyth
, “
Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt
,”
J. Chem. Phys.
148
,
193813
(
2018
).
19.
T. C.
Lourenço
,
Y.
Zhang
,
L. T.
Costa
, and
E. J.
Maginn
, “
A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes
,”
J. Chem. Phys.
148
,
193834
(
2018
).
20.
T.
Stettner
,
P.
Huang
,
M.
Goktas
,
P.
Adelhelm
, and
A.
Balducci
, “
Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices
,”
J. Chem. Phys.
148
,
193825
(
2018
).
21.
V.
Zeindlhofer
,
M.
Berger
,
O.
Steinhauser
, and
C.
Schröder
, “
A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate
,”
J. Chem. Phys.
148
,
193819
(
2018
).
22.
J.
Ingenmey
,
M.
von Domaros
,
E.
Perlt
,
S. P.
Verevkin
, and
B.
Kirchner
, “
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
,”
J. Chem. Phys.
148
,
193822
(
2018
).
23.
Z. L.
Seeger
,
R.
Kobayashi
, and
E. I.
Izgorodina
, “
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
,”
J. Chem. Phys.
148
,
193832
(
2018
).
24.
A.
Nazet
and
R.
Buchner
, “
Dielectric response and transport properties of alkylammonium formate ionic liquids
,”
J. Chem. Phys.
148
,
193836
(
2018
).
25.
C. A.
Rumble
and
M.
Maroncelli
, “
Solvent controlled intramolecular electron transfer in mixtures of 1-butyl-3-methylimidizolium tetrafluoroborate and acetonitrile
,”
J. Chem. Phys.
148
,
193801
(
2018
).
26.
J.
Liu
,
J. A. L.
Willcox
, and
H. J.
Kim
, “
Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach
,”
J. Chem. Phys.
148
,
193830
(
2018
).
27.
E.
Bordes
,
L.
Douce
,
E. L.
Quitevis
,
A. A. H.
Pádua
, and
M. C.
Gomes
, “
Ionic liquids at the surface of graphite: Wettability and structure
,”
J. Chem. Phys.
148
,
193840
(
2018
).
28.
N. M.
Vargas-Barbosa
and
B.
Roling
, “
Time-resolved determination of the potential of zero charge at polycrystalline au/ionic liquid interfaces
,”
J. Chem. Phys.
148
,
193820
(
2018
).
29.
F.
Buchner
,
B.
Uhl
,
K.
Forster-Tonigold
,
J.
Bansmann
,
A.
Groß
, and
R. J.
Behm
, “
Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode|electrolyte interface in li-ion batteries
,”
J. Chem. Phys.
148
,
193821
(
2018
).
30.
D.
Dong
,
J. P.
Vatamanu
,
X.
Wei
, and
D.
Bedrov
, “
The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study
,”
J. Chem. Phys.
148
,
193833
(
2018
).
31.
T.
Mendez-Morales
,
M.
Burbano
,
M.
Haefele
,
B.
Rotenberg
, and
M.
Salanne
, “
Ion-ion correlations across and between electrified graphene layers
,”
J. Chem. Phys.
148
,
193812
(
2018
).
32.
A. A.
de Freitas
,
K.
Shimizu
,
A. M.
Smith
,
S.
Perkin
, and
J. N. C.
Lopes
, “
Structure and dynamics of mica-confined films of [c10c1pyrr][ntf2] ionic liquid
,”
J. Chem. Phys.
148
,
193808
(
2018
).
33.
G. A.
Pilkington
,
K.
Harris
,
E.
Bergendal
,
A. B.
Reddy
,
G. K.
Palsson
,
A.
Vorobiev
,
O. N.
Antzutkin
,
S.
Glavatskih
, and
M. W.
Rutland
, “
Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance
,”
J. Chem. Phys.
148
,
193806
(
2018
).
34.
K.
Usui
,
J.
Hunger
,
M.
Bonn
, and
M.
Sulpizi
, “
Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations
,”
J. Chem. Phys.
148
,
193811
(
2018
).
35.
A. A.
Veldhorst
and
M. C. C.
Ribeiro
, “
Mechanical heterogeneity in ionic liquids
,”
J. Chem. Phys.
148
,
193803
(
2018
).
36.
J. E.
Thomaz
,
H. E.
Bailey
, and
M. D.
Fayer
, “
The influence of mesoscopic confinement on the dynamics of imidazolium-based room temperature ionic liquids in polyether sulfone membranes
,”
J. Chem. Phys.
147
,
194502
(
2017
).
37.
T.
Brinzer
and
S.
Garrett-Roe
, “
Temperature and chain length dependence of ultrafast vibrational dynamics of thiocyanate in alkylimidazolium ionic liquids: A random walk on a rugged energy landscape
,”
J. Chem. Phys.
147
,
194501
(
2017
).
38.
S.
Das
,
B.
Mukherjee
, and
R.
Biswas
, “
Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant?
,”
J. Chem. Phys.
148
,
193839
(
2018
).
39.
R. M.
Fogarty
,
R. P.
Matthews
,
C. R.
Ashworth
,
A.
Brandt-Talbot
,
R. G.
Palgrave
,
R. A.
Bourne
,
T. V.
Hoogerstraete
,
P. A.
Hunt
, and
K. R. J.
Lovelock
, “
Experimental validation of calculated atomic charges in ionic liquids
,”
J. Chem. Phys.
148
,
193817
(
2018
).
40.
F.
Wu
,
C.
Xu
, and
C. J.
Margulis
, “
Dynamics of an excess hole in the 1-methyl-1-butyl-pyrrolidinium dicyanamide ionic-liquid
,”
J. Chem. Phys.
148
,
193831
(
2018
).
41.
G.
Shrivastav
,
R. C.
Remsing
, and
H. K.
Kashyap
, “
Capillary evaporation of the ionic liquid [emim][bf4] in nanoscale solvophobic confinement
,”
J. Chem. Phys.
148
,
193810
(
2018
).
42.
E. C.
Wijaya
,
F.
Separovic
,
C. J.
Drummond
, and
T. L.
Greaves
, “
Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (pil)-water systems
,”
J. Chem. Phys.
148
,
193838
(
2018
).
43.
M.
Hovestadt
,
J.
Schwegler
,
P. S.
Schulz
, and
M.
Hartmann
, “
Synthesis of the zeolitic imidazolate framework zif-4 from the ionic liquid 1-butyl-3-methylimidazolium imidazolate
,”
J. Chem. Phys.
148
,
193837
(
2018
).
44.
C.
Peñalber-Johnstone
,
G.
Adamová
,
N. V.
Plechkova
,
M.
Bahrami
,
T.
Ghaed-Sharaf
,
M. H.
Ghatee
,
K. R.
Seddon
, and
S.
Baldelli
, “
Sum frequency generation spectroscopy of tetraalkylphosphonium ionic liquids at the air-liquid interface
,”
J. Chem. Phys.
148
,
193841
(
2018
).
45.
A.
Strate
,
J.
Neumann
,
V.
Overbeck
,
A.-M.
Bonsa
,
D.
Michalik
,
D.
Paschek
, and
R.
Ludwig
, “
Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation
,”
J. Chem. Phys.
148
,
193843
(
2018
).
46.
D. C. V.
Belchior
,
T. E.
Sintra
,
P. J.
Carvalho
,
M. R. C.
Soromenho
,
J. M. S. S.
Esperança
,
S. P. M.
Ventura
,
R. D.
Rogers
,
J. A. P.
Coutinho
, and
M. G.
Freire
, “
Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts
,”
J. Chem. Phys.
148
,
193842
(
2018
).
47.
R. M.
Lynden-Bell
and
E. L.
Quitevis
, “
A simulation study of CS2 solutions in two related ionic liquids with dications and monocations
,”
J. Chem. Phys.
148
,
193844
(
2018
).
48.
C. J.
Smith
 II
,
S.
Gehrke
,
O.
Hollóczki
,
D. V.
Wagle
,
M. P.
Heitz
, and
G. A.
Baker
, “
NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels
,”
J. Chem. Phys.
148
,
193845
(
2018
).