Mesoscale behavior of polymers is frequently described by universal laws. This physical property motivates us to propose a new modeling concept, grouping polymers into classes with a common long-wavelength representation. In the same class, samples of different materials can be generated from this representation, encoded in a single library system. We focus on homopolymer melts, grouped according to the invariant degree of polymerization. They are described with a bead-spring model, varying chain stiffness and density to mimic chemical diversity. In a renormalization group-like fashion, library samples provide a universal blob-based description, hierarchically backmapped to create configurations of other class-members. Thus, large systems with experimentally relevant invariant degree of polymerizations (so far accessible only on very coarse-grained level) can be microscopically described. Equilibration is verified comparing conformations and melt structure with smaller scale conventional simulations.

Predicting properties of polymeric materials with computer simulations often require their description with microscopic detail. This is, however, challenging due to slow dynamics of entangled “spaghetti-like” polymers1 and the need to address systems with dimensions significantly larger than the coil size (to avoid finite-size effects). To circumvent these difficulties, hierarchical strategies gradually equilibrating the material on different observation scales are attractive (see Ref. 2 and references therein). First, the crudest level is addressed with models, representing a large amount of microscopic degrees of freedom by a single effective particle. Details on shorter wavelengths are then gradually reinserted until all chemical details are recovered. Computations remain tractable since backmapping requires only local sampling.

Implicitly hierarchical approaches assume that the long-wavelength structure is correctly described by the crude model and is insensitive to chemical details. Scale-decoupling in polymers can be rigorously justified and linked to universality of the long-wavelength behavior, often described by generic laws adsorbing chemistry-specific details into few parameters.3 Since different polymers can be mapped to the same point of parameter space, classes of systems with identical long-wavelength properties can be defined. This allows simplifying significantly the hierarchical modeling of polymeric materials by creating “material-genomic” libraries of morphologies with the correct long-wavelength behavior of different classes. For an entire class, such morphology must be generated only once, preferably using the most simple microscopic representation. This system can be even a chemistry non-specific model (e.g., bead-spring) which nevertheless maps on the same point of parameter space. Atomistic representations of any class-member can be recovered reinserting chemical details into the common long-wavelength description with standard techniques.2 

Here, the implementation of this concept is demonstrated for amorphous homopolymer melts. Despite their simplicity, they present significant interest for basic polymer physics (e.g., as a framework for studying rheology) and industry. Polymer melts are systems where long strongly interdigitating molecules fill space in a random walk fashion. The number of molecules crossing the volume of a test chain in a melt of type4γ is proportional to N ̄ ( γ ) 1 / 2 = ρ ( γ ) R ( γ ) 3 / N ( γ ) , where ρ(γ), R(γ), and N(γ) are the monomer density, root mean-square end-to-end distance, and polymerization degree, respectively. The invariant degree of polymerization, N ̄ ( γ ) , presents a natural choice for arranging homopolymer melts into groups with common static long-wavelength properties. Indeed, mesoscale conformations5,6 and liquid structure3,7,8 are known to be universal functions of this quantity (see below). Generally for dynamical properties, non-universalities can appear even in the long-wavelength limit;9 however, there is evidence that the invariant degree of polymerization of subchains between two consecutive entanglements is similar for all polymers.10–12 N ̄ ( γ ) plays a key role in more complex systems, e.g., it controls in a universal way thermodynamic properties in symmetric block-copolymers.13,14

Let us consider different melts (indexed by α), having the same N ̄ ( l ) as the lth library melt (see Fig. 1). For each melt, the regime of universal long-wavelength behavior can be defined introducing a coarse-graining length scale, ΔL(γ) (γ = α, l), in the spirit of renormalization group theories.3,15 In principle, the observation scale separating chemistry-specific and universal behavior cannot be exactly defined, thus, ΔL(γ) presents at this stage an arbitrary “large” scale. Introducing ΔL(γ) renormalizes the microscopic coordinate space as r ̃ = r / Δ L ( γ ) . The shortest subchains that are resolved during coarse-graining contain a number of monomers, Nb(γ), such that their root mean-square end-to-end distance, Rb(γ), equals ΔL(γ). ΔL(γ) can be simply related to Nb(γ) within the Flory hypothesis (FH).3,16 Linking monomers into long chains in combination with incompressibility reduces intermolecular monomer-monomer contacts on the scale of chain-size creating a “correlation hole.” FH proposes that intramolecular interactions tending to swell a chain are canceled by interactions with the other molecules, forming the “soft walls” of the correlation hole. Hence, the polymer conformations on the mesoscale are ideal random walks, so that R b ( γ ) 2 = N b ( γ ) b e ( γ ) 2 . Thus, N b ( γ ) = Δ L ( γ ) 2 / b e ( γ ) 2 . The chemistry-specific coefficient, b e ( γ ) 2 , is the squared effective bond length.1 

FIG. 1.

Hierarchical modeling scheme for homopolymer melts with the same invariant degree of polymerization, N ̄ ( l ) , forming a single class of materials. (a) A library configuration described with microscopic detail is subjected to coarse-graining (the average blob size is ΔL(l)) and scaling of coordinate-space, r ̃ = r / Δ L ( l ) , to obtain (b) a universal blob-based description of long-wavelength structure (the average blob size is unity). (c) The universal description is projected on the coordinate space of any other target α-type melt of the same class, back-transforming the coordinate space, r = Δ L ( α ) r ̃ . The scale ΔL(α) must be properly chosen (see the main text). (d) The initial blob-based description undergoes a sequence of fine-graining steps, substituting every blob in the preceding representation by a pair of smaller ones. (e) Once the blobs are sufficiently small, microscopic details can be reinserted.

FIG. 1.

Hierarchical modeling scheme for homopolymer melts with the same invariant degree of polymerization, N ̄ ( l ) , forming a single class of materials. (a) A library configuration described with microscopic detail is subjected to coarse-graining (the average blob size is ΔL(l)) and scaling of coordinate-space, r ̃ = r / Δ L ( l ) , to obtain (b) a universal blob-based description of long-wavelength structure (the average blob size is unity). (c) The universal description is projected on the coordinate space of any other target α-type melt of the same class, back-transforming the coordinate space, r = Δ L ( α ) r ̃ . The scale ΔL(α) must be properly chosen (see the main text). (d) The initial blob-based description undergoes a sequence of fine-graining steps, substituting every blob in the preceding representation by a pair of smaller ones. (e) Once the blobs are sufficiently small, microscopic details can be reinserted.

Close modal

All melts are represented in the renormalized space by ensembles of chains of spheres (blobs) with the same average diameter R ̃ b ( γ ) = 1 . Combining known theoretical results, we argue that under certain conditions such an ensemble constitutes a common long wavelength description for melts at given N ̄ ( l ) . In practice, stored (library) configurations will have a fixed number of chains, n(l), and volume, V(l). Hence, to identify these conditions, it is natural to consider the canonical ensemble. The α-type and the library melt will have the same conformations and structure in the renormalized space when they (a) are represented by the same amount of blobs, N CG = N ̄ ( l ) / ρ ( γ ) 2 b e ( γ ) 4 Δ L ( γ ) 2 ,17 (b) contain an equal number of chains, n, and (c) have the same rescaled volume, V ̃ = V ( γ ) / Δ L ( γ ) 3 (in fact, since N ̄ ( γ ) is the same, the last condition follows from the other two).

When ideal random walks are coarse-grained into a blob representation, the statistics (a) of the distance, l ̃ , between the center-of-mass (COM) of two sequential blobs and (b) of the angle, θ, between two vectors joining the COM of a blob with the COMs of the preceding and the succeeding blob are universal in renormalized space.18 Since the distributions of internal coordinates l ̃ and θ are universal, the conformations of coarse-grained chains in the library and α-type melts with an identical amount of blobs will be the same. The average mean-square distance of two blobs with ranking numbers s1 and s2 along the chain contour is a representative quantifier of these conformations, given by

R ̃ CG 2 ( s ) = s l ̃ 2 1 + p 1 p 2 p ( 1 p s ) s ( 1 p ) 2 ,
(1)

l ̃ 2 = 2 3 , p = 〈cos(πθ)〉 ≃ 0.22, and s = |s2s1|.

FH was corrected,5,6 demonstrating that the volume spanned by a chain presents a hierarchy of nested correlation holes of all possible subchains. This leads to weak self-avoidance and deviations from the ideal random walk behavior. The power-law dependence is replaced by5,6

R b ( γ ) 2 = N b ( γ ) b e ( γ ) 2 1 c 1 N b ( γ ) 1 / 2 + c 2 N b ( γ ) 1 ,
(2)

c1 and c2 are constants which, in general, are chemistry-specific (though for the end-to-end distance of long chains, the leading order correction in Eq. (2) reduces14 to a universal form).

Since the melts have the same number of chains, it is straightforward to show that they have the same invariant degree of polymerization also on the level of subchains, where N ̄ b ( γ ) 1 / 2 = n N CG / V ̃ . Due to the same N ̄ b ( γ ) , the liquid structure on the scale of blobs will be the same. This conclusion can be traced back to de Gennes predicting3 that the depth of the correlation hole for entire chains scales as N ̄ ( γ ) 1 / 2 . Modeling studies highlighted the universality of the shape of the correlation hole on intermediate scales.7 Blob-packing has been considered within integral equation theory predicting for their intermolecular pair distribution function,8 

g CG ( r ̃ ) = 1 A o N ̄ b ( γ ) 1 / 2 X 0 ( r ̃ , N CG ) ,
(3)

where Ao = 63/2/2π2 and X0 is a universal function.

In summary, theoretical arguments suggest that configurations of homopolymer melts with the same invariant degree of polymerization can be obtained by backmapping a common blob-based representation. The latter is defined in spaces renormalized by the coarse-graining scale and originates from a library melt. In all practical applications, chain length is defined in terms of N(α); thus, the matching library configuration is chosen such that N ̄ ( l ) 1 / 2 = ρ ( α ) b e ( α ) 3 N ( α ) 1 / 2 . The coarse-graining scales of the modeled and library melts are arbitrary, provided that (a) ΔL(γ) are sufficiently large for the subchains to be approximated by ideal random walks and (b) Δ L ( α ) = ( ρ ( l ) b e ( l ) 2 / ρ ( α ) b e ( α ) 2 ) Δ L ( l ) . The last condition establishes the requirement that the number of the blobs be the same (equal to NCG). Identifying N ̄ ( l ) and matching ΔL(γ) requires chemistry-specific information, i.e., b e ( γ ) 2 . Thus, conventional microscopic simulations of small samples of melts with moderate chain-lengths are performed. R b ( γ ) 2 is calculated and fitted with the RHS of Eq. (2), to extract b e ( γ ) 2 , c1, and c2. These data provide also an estimate of ΔL(γ) at which the ideal random walk approximation is accurate. To perform the reference simulations, several techniques are available, including configuration-assembly19,20 and rebridging Monte Carlo algorithms.21 

Prior to fine-graining, the microscopic length scale is recovered back-transforming (cf. Fig. 1) the coordinate space of the blob-based description as r = Δ L ( α ) r ̃ . In principle ΔL(α) (equivalently Nb(α)) can be large, hampering direct reinsertion of microscopic details into the common blob-based representation. This difficulty can be circumvented22 through a hierarchical scheme where a low-resolution blob-based description undergoes a sequence of fine-graining steps. Each step increases resolution substituting every blob with a pair of smaller ones. On these intermediate scales, conformations and liquid structure are affected substantially by microscopic features, so that the blob-based description becomes chemistry-specific. Nevertheless, fine-graining is feasible22 considering the blobs as soft spheres23 with simple interactions parameterized from the reference microscopic simulations. Alternatively, somewhat more complex chemistry-specific blob-based models can be developed from integral equation theories,8,24,25 reducing in the future the need for such calibration data. Once the blobs become sufficiently small, microscopic details can be introduced. The general strategy2 is to reinsert the underlying subchains so that they comply, e.g., with the size and location of the COM of the blobs, and relax the reintroduced degrees of freedom.

As a proof-of-principle, we consider here homopolymer melts described with a generic microscopic model.26 Linear chains are represented with monomers linked by finitely extensible nonlinear elastic (FENE) springs augmented by an angular potential19U(θ) = κθ(γ)(1 − cosθo), where θo is the angle between two sequential springs. Nonbonded interactions are captured through a Weeks-Chandler-Andersen (WCA) potential. For FENE and WCA interactions, the standard parameterization26 is employed. We mimic chemical diversity by varying chain stiffness and/or monomer number density in the range 0 ≤ κθ(γ) ≤ 1.5 and 0.60 ≤ ρ(γ) ≤ 0.85, respectively. All lengths and energies are expressed in units of σ (the characteristic WCA length) and thermal energy, kBT.

For the considered κθ(γ) and ρ(γ), the required microscopic reference samples contained 400–700 chains with N(γ) = 500, at most. These moderate sized systems were efficiently equilibrated through a configuration-assembly procedure19,20 implemented within the ESPResSo+ + package.27 From the reference configurations, b e ( γ ) 2 is extracted as previously described (see Figure S1 and Tables S1 and S2 in the supplementary material28) and plotted as a function of κθ(γ) in the inset of Fig. 2. The main panel of Fig. 2 presents R b ( γ ) 2 / N b ( γ ) b e ( γ ) 2 as a function of Nb(γ) for κθ(γ) = 0 and 1.5. Fig. 2 demonstrates that for all considered κθ(γ), the deviations from the ideal random walk limit drop below 2% roughly at the same threshold N b ( γ ) th = 100 . For practical purposes, for such deviations, we accept the ideal random walk statistics as a valid approximation. Thus, Δ L ( γ ) th = b e ( γ ) N b ( γ ) th is taken as the smallest possible coarse-graining scale.

FIG. 2.

Main panel: mean-square end-to-end distance of subchains, R b ( γ ) 2 , normalized by N b ( γ ) b e ( γ ) 2 as a function of Nb(γ) for two representative values of chain-stiffness parameter, κθ(γ). The monomer density is ρ(γ) = 0.85. The vertical line marks the number of monomers N b ( γ ) th = 100 where deviations from the ideal random walk limit (horizontal dashed black line) are less than 2% (horizontal red dotted line). Inset: b e ( γ ) 2 as a function of κθ(γ) for ρ(γ) = 0.85 and 0.60.

FIG. 2.

Main panel: mean-square end-to-end distance of subchains, R b ( γ ) 2 , normalized by N b ( γ ) b e ( γ ) 2 as a function of Nb(γ) for two representative values of chain-stiffness parameter, κθ(γ). The monomer density is ρ(γ) = 0.85. The vertical line marks the number of monomers N b ( γ ) th = 100 where deviations from the ideal random walk limit (horizontal dashed black line) are less than 2% (horizontal red dotted line). Inset: b e ( γ ) 2 as a function of κθ(γ) for ρ(γ) = 0.85 and 0.60.

Close modal

All library melts represent the same “chemical substance” described by κθ(l) = 1.5 and ρ(l) = 0.85. Creating the library with stiffer homopolymers is advantageous since less monomers per chain are required to achieve the desired N ̄ ( l ) , as follows from N ( γ ) = N ̄ ( γ ) / ρ ( γ ) 2 b e ( γ ) 6 . The library samples cover a broad range of invariant degrees of polymerization 7 . 5 × 1 0 3 N ̄ ( l ) 15 × 1 0 3 which are representative of values in experiments. The samples were generated employing the hierarchical scheme22 mentioned before. Since the universal long-wavelength description is not available at this stage, the melt configuration for fine-graining is obtained22 from direct Monte Carlo equilibration of a chemistry-specific blob-based model. The hierarchical strategy allows the preparation of large library melts, e.g., for N ̄ ( l ) = 7 . 5 × 1 0 3 and 15 × 103, the samples contain n(l) = 1000 chains with N(l) = 500 and 1000 monomers, respectively.

In the library melts, the universal description is reproduced with high accuracy already on the threshold scale, Δ L ( l ) th 16 . 5 . As an illustration, Fig. 3(a) presents for two melts with N ̄ ( l ) = 7 . 5 × 1 0 3 and 15 × 103 the internal distance plot R ̃ CG 2 ( s ) / s . Within error bars, the plots (solid and open circles) follow each other, reproducing closely the universal behavior of Eq. (1) (dashed line). The magnitude of deviations is quantified28 in Figure S2. The blob-blob intermolecular pair distribution function is presented in Fig. 3(b) (solid and open circles) and is well described by the universal form in Eq. (3).

FIG. 3.

(a) Blob-blob internal distance plot, R ̃ CG 2 ( s ) / s (in renormalized space), as a function of difference of their ranking numbers, s, in the coarse-grained chain. Solid and open symbols correspond to N ̄ ( l ) = 7 . 5 × 1 0 3 and 15 × 103. Dashed line shows the universal behavior (see Eq. (1)). (b) Intermolecular pair distribution function of blobs, g CG ( r ̃ ) (in renormalized space), calculated for the melts of (a). Dashed and solid lines are predictions of Eq. (3) for the two N ̄ ( l ) . (c) Symbols present the monomer-monomer internal distance plot, R ( α ) 2 ( s ) / s , for melts I and II equilibrated by backmapping the universal long-wavelength description. s is the difference of monomer ranking numbers in the microscopic chain. Solid lines present R ( α ) 2 ( s ) / s from reference simulations of shorter melts, extrapolated to larger s (blue dashed lines) substituting into Eq. (2) the fitted b e ( γ ) 2 , c1, and c2. (d) Total pair distribution function of monomers, g(α)tot(r), for the melts of (c).

FIG. 3.

(a) Blob-blob internal distance plot, R ̃ CG 2 ( s ) / s (in renormalized space), as a function of difference of their ranking numbers, s, in the coarse-grained chain. Solid and open symbols correspond to N ̄ ( l ) = 7 . 5 × 1 0 3 and 15 × 103. Dashed line shows the universal behavior (see Eq. (1)). (b) Intermolecular pair distribution function of blobs, g CG ( r ̃ ) (in renormalized space), calculated for the melts of (a). Dashed and solid lines are predictions of Eq. (3) for the two N ̄ ( l ) . (c) Symbols present the monomer-monomer internal distance plot, R ( α ) 2 ( s ) / s , for melts I and II equilibrated by backmapping the universal long-wavelength description. s is the difference of monomer ranking numbers in the microscopic chain. Solid lines present R ( α ) 2 ( s ) / s from reference simulations of shorter melts, extrapolated to larger s (blue dashed lines) substituting into Eq. (2) the fitted b e ( γ ) 2 , c1, and c2. (d) Total pair distribution function of monomers, g(α)tot(r), for the melts of (c).

Close modal

Configurations of all other systems can be obtained by fine-graining the blob-based representation characterizing a library melt with the same N ̄ ( l ) , on the scale ΔL(l) = 16.5. As an example, we discuss two chemically different melts with κθ(α) = 0.75, ρ(α) = 0.60 (melt I) and κθ(α) = 0, ρ(α) = 0.85 (melt II). From the definition of invariant degree of polymerization and the data on b e ( α ) 2 from Fig. 2, it follows that both melts for N(melt I) = 1500 and N(melt II) = 2000 map on N ̄ ( l 1 ) = 7 . 5 × 1 0 3 . For N(melt I) = 3000 and N(melt II) = 4000, both correspond to N ̄ ( l 2 ) = 15 × 1 0 3 . Because of scale matching, the universal representation corresponds to ΔL(melt I) = 26.9 and ΔL(melt II) = 26.4, representing an underlying number of monomers Nb(melt I) = 300 and Nb(melt II) = 400, respectively. The universal description is hierarchically fine-grained22 (cf. Fig. 1) until reaching blob-based descriptions corresponding to Nb(melt I) = 75 and Nb(melt II) = 50. Microscopic details are introduced into these small blobs, employing constrained reinsertion of underlying subchains and gradual elimination of overlaps between monomers.19,20

To demonstrate equilibration of melts obtained from this procedure, Fig. 3(c) presents their internal distance plots, R ( α ) 2 ( s ) / s , calculated on microscopic basis. s denotes the difference of the ranking numbers of monomers along chain contour and R ( α ) 2 ( s ) is their mean-square end-to-end distance. In all cases, R ( α ) 2 ( s ) / s in the backmapped melts follow closely their counterparts in independent reference simulations (they deviate at most by 2%, see Ref. 28 Figure S3). These observations strongly verify our approach, since internal distance plots are extremely sensitive19 to the quality of equilibration. Fig. 3(d) compares the total monomer-monomer pair distribution functions, g(α)tot(r), in the backmapped and reference melts, demonstrating that the local structure is correctly reproduced. It is instructive to convert the equilibrated melts I and II to blob-based representations in the renormalized space, corresponding to the initial coarse-graining scales ΔL(melt I) = 26.9 and ΔL(melt II) = 26.4. The calculated R ̃ CG 2 ( s ) / s and g CG ( r ̃ ) are plotted in Figs. 3(a) and 3(b) and reproduce the universal behavior of the library melts.

These results confirm that a single melt can serve as a blueprint for configurations of different homopolymers described with microscopic resolution. Describing all systems through bead-spring models does not compromise the applicability of the approach to real materials. It has been already demonstrated that such models offer microscopic (albeit coarse-grained) description of real polymers when appropriately parameterized.29–31 Moreover, the atomistic description can be recovered by backmapping the bead-spring representation through standard schemes.29,31 So far, large samples with experimentally relevant invariant degrees of polymerization, as those in the current work, have been generated only on drastically coarse-grained level.32 Here, these systems are described microscopically with minimum computational costs. For example, equilibrating a sample of melt II with N(melt II) = 4000 at N ̄ ( l ) = 15 × 1 0 3 (4 × 106 monomers in total) required only six days on 32 processors (3.0 GHz). The concept was elaborated and verified for melts of linear chains but should be straightforward to extend to certain cases of non-linear molecules, e.g., branched or concatenated ring-polymers (named3 “Olympic gels”). In contrast, the implementation to nonconcatenated ring-polymers is challenging since coarse-graining into blobs relaxes microscopic non-crossability of subchains. It is important to explore whether similar strategies are applicable to materials with complex long-wavelength structure, depending on more control parameters,13,14 e.g., microphase-separated block-copolymers.

It is a pleasure to thank Livia Moreira for fruitful discussions and Carlos Marques for carefully reading our manuscript. The computing time granted by the John von Neumann Institute for Computing (NIC) on the supercomputer JUROPA at Jülich Supercomputing Centre (JSC) is gratefully acknowledged.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
2.
C.
Peter
and
K.
Kremer
,
Soft Matter
5
,
4357
(
2009
).
3.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, New York
,
1979
).
4.

Two homopolymer melts are of different types, if their chains are unlike in some respect. Apart from cases of dissimilar chemical structure, this definition includes differences, e.g., in polymerization degree of the two melts.

5.
J. P.
Wittmer
,
P.
Beckrich
,
H.
Meyer
,
A.
Cavallo
,
A.
Johner
, and
J.
Baschnagel
,
Phys. Rev. E
76
,
011803
(
2007
).
6.
J.
Glaser
,
J.
Qin
,
P.
Medapuram
, and
D. C.
Morse
,
Macromolecules
47
,
851
(
2014
).
7.
M.
Müller
and
K.
Binder
,
Macromolecules
28
,
1825
(
1995
).
8.
A. J.
Clark
,
J.
McCarty
, and
M. G.
Guenza
,
J. Chem. Phys.
139
,
124906
(
2013
).
9.
T. C. B.
McLeish
,
Adv. Phys.
51
,
1379
(
2002
).
10.
Y. H.
Lin
,
Macromolecules
20
,
3080
(
1987
).
11.
L. J.
Fetters
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
,
Macromolecules
27
,
4639
(
1994
).
12.
R.
Everaers
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
,
Science
303
,
823
(
2004
).
13.
G. H.
Fredrickson
and
E.
Helfand
,
J. Chem. Phys.
87
,
697
(
1987
).
14.
J.
Glaser
,
P.
Medapuram
,
T. M.
Beardsley
,
M. W.
Matsen
, and
D. C.
Morse
,
Phys. Rev. Lett.
113
,
068302
(
2014
).
15.
K. F.
Freed
,
Renormalization Group Theory of Macromolecules
(
Wiley
,
New York
,
1987
).
16.
P. J.
Flory
,
J. Chem. Phys.
17
,
303
(
1949
).
17.

The relationship follows substituting into the definition NCG = N(γ)/Nb(γ) the expressions Nb(γ)=ΔL(γ)2/be(γ)2 and N(γ)=N̄(l)/ρ(γ)2be(γ)6.

18.
M.
Laso
,
H. C.
Öttinger
, and
U. W.
Suter
,
J. Chem. Phys.
95
,
2178
(
1991
).
19.
R.
Auhl
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
,
J. Chem. Phys.
119
,
12718
(
2003
).
20.
L. A.
Moreira
,
G. J.
Zhang
,
F.
Müller
,
T.
Stuehn
, and
K.
Kremer
, “
Direct equilibration and characterization of polymer melts for computer simulations
,”
Macromol. Theory Simul.
(in press).
21.
N. C.
Karayiannis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
Phys. Rev. Lett.
88
,
105503
(
2002
).
22.
G. J.
Zhang
,
L. A.
Moreira
,
T.
Stuehn
,
K. Ch.
Daoulas
, and
K.
Kremer
,
ACS Macro Lett.
3
,
198
(
2014
).
23.
T.
Vettorel
,
G.
Besold
, and
K.
Kremer
,
Soft Matter
6
,
2282
(
2010
).
24.
J.
McCarty
,
A. J.
Clark
,
J.
Copperman
, and
M. G.
Guenza
,
J. Chem. Phys.
140
,
204913
(
2014
).
25.
D.
Yang
and
Q.
Wang
,
J. Chem. Phys.
142
,
054905
(
2015
).
26.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
27.
J. D.
Halverson
,
T.
Brandes
,
O.
Lenz
,
A.
Arnold
,
S.
Bevc
,
V.
Starchenko
,
K.
Kremer
,
T.
Stuehn
, and
D.
Reith
,
Comput. Phys. Commun.
184
,
1129
(
2013
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4922538 where Figure S1 illustrates fitting R b ( γ ) 2 with Eq. (2). Tables S1 and S2 summarize the parameters b e ( γ ) 2 , c1, and c2extracted from these fits. Figure S2 quantifies deviations of blob-blob internal distance plots in simulations from the universal curve, Eq. (1). Figure S3 quantifies deviations of monomer-monomer internal distance plots in backmapped melts from their counterparts in reference MD simulations.
29.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
,
Acta Polym.
49
,
61
(
1998
);
W.
Tschöp
,
K.
Kremer
,
O.
Hahn
,
J.
Batoulis
, and
T.
Bürger
,
Acta Polym.
49
,
75
(
1998
).
30.
H.
Fukunaga
,
J.
Takimoto
, and
M.
Doi
,
J. Chem. Phys.
116
,
8183
(
2002
).
31.
V. A.
Harmandaris
,
N. P.
Adhikari
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
Macromolecules
39
,
6708
(
2006
).
32.
M.
Müller
,
J. Stat. Phys.
145
,
967
(
2011
).

Supplementary Material