We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

Vibrational spectroscopy provides a rich and diverse source of information about molecular structure and functionality. For this reason, methods for calculating molecular vibrational spectra were developed already in the early days of quantum-chemical computations, to help elucidate molecular structure and to provide insight into experimental observations. Already in 1958, Bratoz recognized the benefits of calculating the forces acting on the nuclei of a molecule in an analytic manner.1 However, the breakthrough in terms of computing molecular gradients and force fields came with the efficient implementation of molecular gradients by Pulay in 1969.2 

Molecular gradients are the first-order derivatives of the molecular energy with respect to nuclear displacements and can be determined from the unperturbed electron density and from differentiated one- and two-electron integrals. The complexity increases significantly when going to the molecular force fields or molecular Hessians (corresponding to the second-order derivatives of the molecular energy with respect to nuclear displacements) as also the perturbed electron density matrix is needed in this case. Thomson and Swanstrøm presented the first implementation of molecular Hessians in 1973.3 In the early 1980s, implementations of molecular Hessians for unrestricted and restricted open-shell Hartree–Fock (HF) wave functions were published by Yamaguchi, Schaefer, and co-workers.4,5 In the following years, second-order geometrical derivatives were derived and implemented for a wide range of correlated wave functions.6–15 More recently, implementations of molecular Hessians have been presented at the level of density-functional theory (DFT).16–18 For a detailed historical account, see recent reviews of analytic derivative techniques for molecular properties in general and molecular force fields in particular.19–21 

In parallel with the development of force-field calculations for correlated wave functions, Schaefer, Handy, and co-workers extended the evaluation of geometrical derivatives of the HF energy to third22,23 and fourth24 orders. Despite the importance of cubic and quartic force fields for determining, for instance, anharmonic corrections to vibrational frequencies, Fermi resonances,25 rotation–vibration constants,26 vibrationally averaged geometries,27–29 and l-doubling constants,25,30,31 these implementations have seen little use in the literature. Part of the reason for this may be that anharmonic corrections are important only in high-accuracy studies,32–34 where the HF approximation may not be sufficient. Also, the implementation of efficient schemes for obtaining anharmonic force fields by numerical differentiation of forces and force constants at highly correlated levels of theory has proven feasible, even for relatively large molecules.35,36

To some extent, the low cost of Kohn–Sham DFT has changed this picture. In a series of studies, Barone and co-workers have shown that high-quality harmonic force fields in combination with DFT anharmonic corrections provide reliable estimates of anharmonic force fields37,38 and of anharmonic corrections to intensities,39 thus demonstrating that anharmonic effects can now be studied straightforwardly for large and complex molecular systems. In their studies, geometrical derivatives beyond second order were determined by finite differences.32,40,41 The high cost of such finite-difference schemes and their numerical instability provide a strong motivation for developing analytic methods for third- and fourth-order geometrical derivatives at the DFT level. Also, fifth- and sixth-order geometrical derivatives are needed in fourth-order vibrational perturbation theory (VPT4); recently, we have calculated analytically quintic and sextic force fields at the HF level of theory.42 

In this work, we describe the analytic calculation of cubic and quartic force constants at the level of Kohn–Sham DFT, using generalized-gradient-approximation (GGA) and hybrid functionals. This work builds on several developments in our groups in recent years. In particular, we use the framework of an atomic-orbital (AO) based, open-ended quasi-energy response-theory formalism described by Thorvaldsen et al.,43 which for force fields reduces to regular energy-derivative theory in the AO basis,44 extended to fourth-order derivatives. The geometrical derivatives of the one-electron integrals arising from the geometry dependence of the AOs are evaluated using the one-electron integral framework of Gao, Thorvaldsen, and Ruud.45 The evaluation of geometrical derivatives of the two-electron repulsion integrals follows the approach of Reine, Tellgren, and Helgaker,46 expanding solid-harmonic Gaussians directly in Hermite Gaussians. We furthermore extend automatic differentiation of exchange–correlation kernels47 to include corrections arising from the dependence of the AOs on the nuclear positions. Finally, we demonstrate the usefulness of the code by evaluating the cubic and quartic force constants and anharmonic force-field corrections for selected molecules.

The bulk of this paper is organized as follows. In Sec. II, we give a brief account of the AO-based energy-derivative framework used by us and give the expressions for the cubic and quartic force constants. A brief description of the evaluation of the exchange–correlation contribution is also given. Section III contains computational details of the calculations, while Sec. IV presents and discusses the results. Finally, in Sec. V, we give some concluding remarks and perspectives for the analytic calculation of higher-order properties that involve geometrical distortions.

We here present the theory behind our AO-based implementation of DFT cubic and quartic force fields, the AO-formulation ensuring that the approach is suitable for linear-scaling methodology.48 The approach builds on the general AO-based framework for time- and perturbation-dependent basis sets by Thorvaldsen et al.,43 here applied to time-independent perturbations. We note that, even though explicit equations are given for the evaluation of the cubic and quartic force fields, our implementation uses a recursive scheme, for which explicit expressions for energy derivatives are not needed.49 Compared with the earlier implementations by Schaefer, Handy, and co-workers,22–24 our implementation is extended to DFT and formulated entirely in the AO basis, although at present a molecular-orbital-based response solver is used to determine the perturbed density matrices.

In Sec. II A, we review the basic theory of the analytic calculation of geometrical derivatives at the DFT level, providing explicit expressions for the cubic and quartic force constants; next, in Sec. II B, we describe the evaluation of exchange–correlation contributions to the cubic and quartic force constants, combining the perturbation dependence of the overlap distributions with the use of automatic differentiation to evaluate the higher-order exchange–correlation kernel derivatives.47 

We follow the notation of the AO-based response theory for self-consistent-field (SCF) methods with time- and perturbation-dependent basis sets by Thorvaldsen et al.,43 specialized to static perturbations. In Kohn–Sham DFT, the energy can in the AO basis be written as

\begin{equation}E\left(\mathbf {D}\right) \stackrel{\mathrm{Tr}}{=}\mathbf {h}\mathbf {D} + \frac{1}{2}\mathbf {G}^\gamma \left(\mathbf {D}\right)\mathbf {D} + E_{\mathrm{xc}}\left[ \rho \left(\mathbf {D}\right)\right] + h_{\mathrm{nuc}}.\end{equation}
ED= Tr hD+12GγDD+E xc ρD+h nuc .
(1)

In this expression, “Tr” indicates that the trace of the matrix products on the right-hand side of the equation is taken, Exc[ρ(D)] is the exchange–correlation energy, which is a functional of the generalized density vector ρ (see Sec. II B), hnuc is the nuclear repulsion energy, and D is the AO density matrix. The density matrix fulfills the idempotency relation

\begin{equation}\mathbf {0} = \mathbf {D} \mathbf {S} \mathbf {D} - \mathbf {D}.\end{equation}
0=DSDD.
(2)

We have in Eqs. (1) and (2) also introduced the one-electron integral matrix, h, the two-electron integral matrix constructed from D with γ fractional exchange, Gγ(D), and the overlap matrix, S, whose elements are given by

\begin{align}h_{\mu \nu } &= \langle \chi _\mu | -\frac{1}{2}\nabla ^2-\sum _K\frac{Z_K}{|\mathbf {R}_K-\mathbf {r}|} | \chi _\nu \rangle ,\end{align}
hμν=χμ|122KZK|RKr||χν,
(3)
\begin{align}G_{\mu \nu }^\gamma (\mathbf {M}) &= \sum _{\alpha \beta }M_{\beta \alpha }(g_{\mu \nu \alpha \beta }-\gamma g_{\mu \beta \alpha \nu }),\end{align}
Gμνγ(M)=αβMβα(gμναβγgμβαν),
(4)
\begin{align}S_{\mu \nu } &= \langle \chi _\mu \vert \chi _\nu \rangle .\end{align}
Sμν=χμ|χν.
(5)

The χμ are spherical-harmonic Gaussian AOs and the summation in Eq. (3) is over atomic nuclei at RK and with charge ZK. The two-electron integrals are defined in the conventional manner as

\begin{equation}g_{\mu \nu \rho \sigma } = \iint \text{d} \mathbf {x}_1 \text{d} \mathbf {x}_2 \; \chi _\mu ^{*}\left(\mathbf {x}_1\right)\chi _{\nu }\left(\mathbf {x}_1\right)r_{12}^{-1}\chi _{\rho }^{*}\left(\mathbf {x}_2\right)\chi _{\sigma }\left(\mathbf {x}_2\right),\end{equation}
gμνρσ=dx1dx2χμ*x1χνx1r121χρ*x2χσx2,
(6)

with integration over all spin and spatial coordinates.

The optimized Kohn–Sham density fulfills the SCF condition

\begin{equation}\mathbf {F} \mathbf {D} \mathbf {S} - \mathbf {S} \mathbf {D} \mathbf {F} = \mathbf {0},\end{equation}
FDSSDF=0,
(7)

where the Kohn–Sham matrix F is defined as

\begin{equation}\mathbf {F} = \frac{\partial E}{\partial \mathbf {D}^\textrm {T}} = \mathbf {h}+\mathbf {G}^\gamma \left(\mathbf {D}\right) + \mathbf {F}_{\mathrm{xc}},\end{equation}
F=EDT=h+GγD+F xc ,
(8)

with

\begin{equation}\mathbf {F}_{\text{xc}} = \int \text{d} \mathbf {r} \; \frac{\partial E_\text{xc} (\mathbf {r})}{\partial \rho (\mathbf {r})} \frac{\partial \rho (\mathbf {r})}{\partial \mathbf {D}^\text{T}} .\end{equation}
Fxc=drExc(r)ρ(r)ρ(r)DT.
(9)

Following Refs. 43,49,50, we take as our starting point for the generation of higher-order derivatives the energy-gradient Lagrangian

$\mathcal {L}^a$
La defined as

\begin{equation}\mathcal {L}^{a} = \mathcal {L}^{a}(\mathbf {D},\bm{\zeta }_a,\bm{\lambda }_a) \stackrel{{\scriptstyle \mathrm{Tr} }}{=} \frac{\partial E(\mathbf {D})}{\partial \varepsilon _a} - \mathbf {S}^{a} \mathbf {W} - \bm{\lambda }_{a}^{} \mathbf {Y} - \bm{\zeta }_{a}^{} \mathbf {Z},\end{equation}
La=La(D,ζa,λa)= Tr E(D)ɛaSaWλaYζaZ,
(10)

where the superscript a indicates differentiation with respect to an applied perturbation of strength ɛa. In Eq. (10) we have introduced the energy-weighted density matrix

\begin{equation}\mathbf {W} = \mathbf {D} \mathbf {F} \mathbf {D},\end{equation}
W=DFD,
(11)

as well as matrices that represent the constraints on the unperturbed reference state—in particular, the idempotency and SCF-state matrices, respectively,

\begin{align}\mathbf {Z} &= \mathbf {D} \mathbf {S} \mathbf {D} - \mathbf {D},\end{align}
Z=DSDD,
(12)
\begin{align}\mathbf {Y} &= \mathbf {F} \mathbf {D} \mathbf {S} - \mathbf {S} \mathbf {D} \mathbf {F}.\end{align}
Y=FDSSDF.
(13)

For an optimized SCF state, Eqs. (2) and (7) can be written compactly as Z = 0 and Y = 0. Additionally, we have introduced the Lagrange multipliers λa and ζa, respectively, for these constraints. In Ref. 43, it is shown that Eq. (10) is variational in D if the zeroth-order multipliers are defined as

\begin{eqnarray}\bm{\lambda }_{a} &=& \mathbf {D}^{a} \mathbf {S} \mathbf {D} - \mathbf {D} \mathbf {S} \mathbf {D}^{a},\end{eqnarray}
λa=DaSDDSDa,
(14)
\begin{eqnarray}\bm{\zeta }_{a} &=& \mathbf {F}^{a} \mathbf {D} \mathbf {S} + \mathbf {S} \mathbf {D} \mathbf {F}^{a} - \mathbf {F} \mathbf {D} \mathbf {S}^{a} - \mathbf {S}^{a} \mathbf {D} \mathbf {F} - \mathbf {F}^{a}.\end{eqnarray}
ζa=FaDS+SDFaFDSaSaDFFa.
(15)

The subscript a on the multipliers does not indicate differentiation, merely the relation to

$\mathcal {L}^{a}$
La⁠.

Since we require Eq. (10) to be variational in the density D and the multipliers λa and ζa, we can take advantage of the 2n + 1 rule for the density and the 2n + 2 rule for the multipliers50,51 when differentiating the energy gradient Lagrangian.

1. Molecular gradient

Let us first consider the first-order geometrical derivatives of the molecular energy. In this case, Eq. (10) simplifies to Pulay's expression from 19692 

\begin{equation}\frac{\text{d} E}{\text{d} \varepsilon _a} = \mathcal {L}^{a} \stackrel{\scriptstyle \mathrm{Tr}}{=} \frac{\partial E}{\partial \varepsilon _a} - \mathbf {S}^{a} \mathbf {W},\end{equation}
dEdɛa=La= Tr EɛaSaW,
(16)

where no derivatives of the Lagrange multipliers are required because of the 2n + 2 rule.50 We note that the molecular gradient can be determined from a knowledge of the unperturbed density alone, in accordance with the 2n + 1 rule.

2. Molecular Hessian

Differentiating Eq. (10) with respect to b, keeping only terms that fulfill the 2n + 1 and 2n + 2 rules, we obtain for the molecular Hessian the expression

\begin{eqnarray}\frac{\text{d}^2 E}{\text{d} \varepsilon _a \text{d} \varepsilon _b} &=& \frac{\text{d}\mathcal {L}^{a}}{\text{d} \varepsilon _b} = \mathcal {L}^{ab} \stackrel{\scriptstyle \mathrm{Tr}}{=} \frac{\partial ^2 E}{\partial \varepsilon _a \partial \varepsilon _b} + \frac{\partial ^2 E}{\partial \varepsilon _a \partial \mathbf {D}^\mathrm{T}} \mathbf {D}^{b}\nonumber\\&& -\, \mathbf {S}^{ab} \mathbf {W} - \mathbf {S}^{a} \mathbf {W}^{b}.\end{eqnarray}
d2Edɛadɛb=dLadɛb=Lab= Tr 2Eɛaɛb+2EɛaDTDbSabWSaWb.
(17)

As for the gradient, no zeroth-order multipliers are required. However, the first-order perturbed density matrix is needed to calculate the molecular Hessian; we return to the evaluation of the perturbed densities in Sec. II A 5. Henceforth, we adopt the subscript notation of Ref. 43, writing the Hessian as

\begin{equation}\frac{\text{d}^2 E}{\text{d} \varepsilon _a \text{d} \varepsilon _b} = \mathcal {L}_{0,1}^{ab} \stackrel{\scriptstyle \mathrm{Tr}}{=} E_{0,1}^{ab} - (\mathbf {S W})^{ab}_{1_W},\end{equation}
d2Edɛadɛb=L0,1ab= Tr E0,1ab(SW)1Wab,
(18)

where superscripts denote total derivatives. The subscripts (k, n) specify the maximum order of the perturbed density matrix D: to order k for collections of perturbations involving perturbation a, and to order n for collections of perturbations not involving perturbation a. The notation nW for the SW term specifies in a similar manner the maximum order of differentiation of W in this term, as dictated by the value of n.

The Hessian expression in Eq. (17) is not explicitly symmetric in a and b (the numerical values, of course, are). As shown by Sellers, an explicitly symmetric formula can be advantageous from a numerical point of view.52 

3. Cubic force constants

For the calculation of cubic force constants, the third-order energy derivative is needed. Proceeding as above, we differentiate the gradient Lagrangian twice, keeping only terms that fulfill the 2n + 1 and 2n + 2 rules

\begin{eqnarray}\mathcal {L}_{1,1}^{abc} & \stackrel{\scriptstyle \mathrm{Tr}}{=} & (E^a)^{bc}_1 - \mathbf {S}^{abc} \mathbf {W} - \mathbf {S}^{ac} \mathbf {W}^{b} - \mathbf {S}^{ab} \mathbf {W}^{c} - \mathbf {S}^{a} \mathbf {W}^{bc}_1\nonumber\\&& -\, \bm{\lambda }_a\mathbf {Y}_{1}^{bc}-\bm{\zeta }_{a}\mathbf {Z}_{1}^{bc},\end{eqnarray}
L1,1abc= Tr (Ea)1bcSabcWSacWbSabWcSaW1bcλaY1bcζaZ1bc,
(19)

where the subscript 1 on the right-hand side indicates that only terms with density matrices up to first order are to be included. For example, in the expressions

\begin{align}\mathbf {W}^{bc}_1 &= \mathbf {D}^b \mathbf {F}^c \mathbf {D} + \mathbf {D}^b \mathbf {F} \mathbf {D}^c + \mathbf {D} \mathbf {F}^b \mathbf {D}^c + \mathbf {D} \mathbf {F}^{bc}_1 \mathbf {D},\end{align}
W1bc=DbFcD+DbFDc+DFbDc+DF1bcD,
(20)
\begin{align}\mathbf {Z}^{bc}_1 &= \mathbf {D}^b \mathbf {S}^c \mathbf {D} + \mathbf {D}^b \mathbf {S} \mathbf {D}^c + \mathbf {D} \mathbf {S}^b \mathbf {D}^c + \mathbf {D} \mathbf {S}^{bc} \mathbf {D}\end{align}
Z1bc=DbScD+DbSDc+DSbDc+DSbcD
(21)

there are no terms containing Dbc. In Ref. 43 it is shown how to rewrite the above expression in a more symmetric form

\begin{equation}\mathcal {L}_{1,1}^{abc} \stackrel{\scriptstyle \mathrm{Tr}}{=} E_{1,1}^{abc}-(\mathbf {SW})_{1_{W}}^{abc}-\mathbf {S}^{a}\mathbf {W}_{1^{\prime }}^{bc}-\bm{\lambda }_a\mathbf {Y}_{1^{\prime }}^{bc}-\bm{\zeta }_{a}\mathbf {Z}_{1^{\prime }}^{bc}.\end{equation}
L1,1abc= Tr E1,1abc(SW)1WabcSaW1bcλaY1bcζaZ1bc.
(22)

Here, a prime on the subscript means that the subscript refers to the maximum order of differentiation of S, D, and F (rather than the order of D), for example,

\begin{align}\mathbf {W}^{bc}_{1^{\prime }} = \mathbf {D}^b \mathbf {F}^c \mathbf {D} + \mathbf {D}^b \mathbf {F} \mathbf {D}^c + \mathbf {D} \mathbf {F}^b \mathbf {D}^c,\end{align}
W1bc=DbFcD+DbFDc+DFbDc,
(23)
\begin{align}\mathbf {Z}^{bc}_{1^{\prime }} = \mathbf {D}^b \mathbf {S}^c \mathbf {D} + \mathbf {D}^b \mathbf {S} \mathbf {D}^c + \mathbf {D} \mathbf {S}^b \mathbf {D}^c.\end{align}
Z1bc=DbScD+DbSDc+DSbDc.
(24)

Even though the two first terms

$E_{1,1}^{abc}$
E1,1abc and
$(\mathbf {SW})_{1_{W}}^{abc}$
(SW)1Wabc
in Eq. (22) are explicitly symmetric in abc, the remaining terms are not. It is possible to symmetrize the expression but this does not give any computational benefits.

4. Quartic force constants

Following the same procedure as for the cubic force constants, it is possible to derive the following expression for the fourth-order energy derivative:43 

\begin{eqnarray}\mathcal {L}_{2,1}^{abcd} & \stackrel{\scriptstyle \mathrm{Tr}}{=} & E_{2,1}^{abcd}-(\mathbf {SW})_{1_W}^{abcd}\nonumber \\&&-\, \mathbf {S}^{ad}\mathbf {W}_{1^{\prime }}^{bc}-\mathbf {S}^{ac}\mathbf {W}_{1^{\prime }}^{bd}-\mathbf {S}^{ab}\mathbf {W}_{1^{\prime }}^{cd}-\mathbf {S}^{a}\mathbf {W}_{1^{\prime }}^{bcd}\nonumber \\&&-\, \bm{\lambda }_a^{d}\mathbf {Y}_{1^{\prime }}^{bc}-\bm{\lambda }_a^{c}\mathbf {Y}_{1^{\prime }}^{bd}-\bm{\lambda }_a^{b}\mathbf {Y}_{1^{\prime }}^{cd}-\bm{\lambda }_a\mathbf {Y}_{1^{\prime }}^{bcd}\nonumber \\&&-\, \bm{\zeta }_{a}^{d}\mathbf {Z}_{1^{\prime }}^{bc}-\bm{\zeta }_{a}^{c}\mathbf {Z}_{1^{\prime }}^{bd}-\bm{\zeta }_{a}^{b}\mathbf {Z}_{1^{\prime }}^{cd}-\bm{\zeta }_{a}\mathbf {Z}_{1^{\prime }}^{bcd}.\end{eqnarray}
L2,1abcd= Tr E2,1abcd(SW)1WabcdSadW1bcSacW1bdSabW1cdSaW1bcdλadY1bcλacY1bdλabY1cdλaY1bcdζadZ1bcζacZ1bdζabZ1cdζaZ1bcd.
(25)

As expected, we need up to second-order perturbed density matrices and first-order multipliers. By retaining the second-order density matrices involving the perturbations bcd, it is possible to eliminate the first-order multipliers43 

\begin{equation}\mathcal {L}_{1,2}^{abcd} \stackrel{\scriptstyle \mathrm{Tr}}{=} E_{1,2}^{abcd} -(\mathbf {SW})_{2_W}^{abcd}-\mathbf {S}^{a}\mathbf {W}_{2^{\prime }}^{bcd}-\bm{\lambda }_a\mathbf {Y}_{2^{\prime }}^{bcd}-\bm{\zeta }_{a}\mathbf {Z}_{2^{\prime }}^{bcd}.\end{equation}
L1,2abcd= Tr E1,2abcd(SW)2WabcdSaW2bcdλaY2bcdζaZ2bcd.
(26)

In this notation, the latter expression appears more compact, but if one expands the different terms, one finds that Eqs. (25) and (26) are of similar complexity. Finally, we note that neither expression is explicitly symmetric in the perturbation labels.

5. Perturbed density matrices

To evaluate the expressions for the energy derivatives, we need first- and second-order perturbed density matrices. Since the unperturbed density matrix satisfies the idempotency condition and the SCF equations, the perturbed density can be obtained by differentiating Eqs. (2) and (7). In other words, the matrix Db is the solution to the simultaneous equations Zb = 0 and Yb = 0:

\begin{align}\mathbf {D} \mathbf {S} \mathbf {D}^{b} + \mathbf {D} \mathbf {S}^{b} \mathbf {D} + \mathbf {D}^{b} \mathbf {S} \mathbf {D} - \mathbf {D}^{b} &= \mathbf {0},\quad (\mathbf {Z}^{b}=\mathbf {0}),\end{align}
DSDb+DSbD+DbSDDb=0,(Zb=0),
(27)
\begin{eqnarray}&& \mathbf {F} \mathbf {D} \mathbf {S}^{b} + \mathbf {F} \mathbf {D}^{b} \mathbf {S} + \mathbf {F}^{b} \mathbf {D} \mathbf {S} - \mathbf {S} \mathbf {D} \mathbf {F}^{b} - \mathbf {S} \mathbf {D}^{b} \mathbf {F} - \mathbf {S}^{b} \mathbf {D} \mathbf {F} = \mathbf {0},\nonumber\\&&(\mathbf {Y}^{b}=\mathbf {0}).\end{eqnarray}
FDSb+FDbS+FbDSSDFbSDbFSbDF=0,(Yb=0).
(28)

We rewrite Eq. (27) by collecting only terms containing Db on one side, yielding

\begin{equation}\mathbf {D} \mathbf {S} \mathbf {D}^{b} + \mathbf {D}^{b} \mathbf {S} \mathbf {D} - \mathbf {D}^{b} = \mathbf {N},\quad \mathbf {N} = \mathbf {Z}^{b}\vert _{\mathbf {D}^{b} = \mathbf {0}},\end{equation}
DSDb+DbSDDb=N,N=Zb|Db=0,
(29)

which has a solution of the general form

\begin{align}\mathbf {D}^{b} &= \mathbf {D}_\text{p} + \mathbf {D}_\text{h},\end{align}
Db=Dp+Dh,
(30)
\begin{align}\mathbf {D}_\text{p} &= \mathbf {NSD} + \mathbf {DSN} - \mathbf {N},\end{align}
Dp=NSD+DSNN,
(31)
\begin{align}\mathbf {D}_\text{h} &= \mathbf {XSD} - \mathbf {DSX},\end{align}
Dh=XSDDSX,
(32)

where Db has been partitioned into a particular part

$\mathbf {D}_\text{p}$
Dp and a homogeneous part
$\mathbf {D}_\text{h}$
Dh
. In the homogeneous equation, N = 0 and the equation is automatically satisfied by the ansatz
$\mathbf {D}_\text{h}=\mathbf {XSD}-\mathbf {DSX}$
Dh=XSDDSX
.

To determine X, we use the differentiated SCF equation. Inserting Eq. (30) into Eq. (28) and collecting all terms containing X on the left, we arrive at the coupled-perturbed Kohn–Sham equations (or more generally the linear response equations)

\begin{equation}\mathbf {E}^{[2]} \mathbf {X} = \mathbf {M},\end{equation}
E[2]X=M,
(33)

where we can identify the electronic Hessian E[2] in the AO basis

\begin{equation}\mathbf {E}^{[2]} \mathbf {X} = \left(\frac{\partial \mathbf {F}}{\partial \mathbf {D}^\mathrm{T}}\mathbf {D}_\text{h}\right)\!\mathbf {DS} - \mathbf {SD}\!\left(\frac{\partial \mathbf {F}}{\partial \mathbf {D}^\mathrm{T}}\mathbf {D}_\text{h}\right) + \mathbf {F} \mathbf {D}_\text{h} \mathbf {S} - \mathbf {S} \mathbf {D}_\text{h} \mathbf {F},\end{equation}
E[2]X=FDTDhDSSDFDTDh+FDhSSDhF,
(34)

and the right-hand side

\begin{equation}\mathbf {M} = \mathbf {Y}^{b}\vert _{\mathbf {D}^{b} = \mathbf {D}_\text{p}^b}.\end{equation}
M=Yb|Db=Dpb.
(35)

In the same way, the second-order perturbed density matrix Dbc can be determined from the equations Zbc = 0 and Ybc = 0. The resulting equations have the same structure as in Eqs. (30) and (33), the matrices N and M now being

\begin{align}\mathbf {N} &= \mathbf {Z}^{bc}\vert _{\mathbf {D}^{bc} = \mathbf {0}},\end{align}
N=Zbc|Dbc=0,
(36)
\begin{align}\mathbf {M} &= \mathbf {Y}^{bc}\vert _{\mathbf {D}^{bc} = \mathbf {D}_\text{p}^{bc}}.\end{align}
M=Ybc|Dbc=Dpbc.
(37)

To summarize, we must solve one set of linear response equations for each perturbed density matrix, where the right-hand side depends on (perturbed) density matrices of lower orders. We refer to Ref. 43 for further details.

We employ an exchange–correlation energy

$E_\text{xc}$
Exc defined as the integral over a local function
$\epsilon _\text{xc} (\mathbf {r})$
εxc(r)
that depends on the density n(r) and its Cartesian gradient ∇n(r):

\begin{equation}E_\text{xc} = \int \! \text{d} \mathbf {r} \; \epsilon _\text{xc} (n (\mathbf {r}), \nabla n (\mathbf {r})) = \int \! \text{d} \mathbf {r} \; \epsilon _\text{xc} (\rho (\mathbf {r})),\end{equation}
Exc=drεxc(n(r),n(r))=drεxc(ρ(r)),
(38)

where

\begin{align}n (\mathbf {r}) &\stackrel{{\scriptstyle \mathrm{Tr}}}{=} \bm{\Omega }(\mathbf {r}) \mathbf {D},\end{align}
n(r)= Tr Ω(r)D,
(39)
\begin{align}\nabla n (\mathbf {r}) &\stackrel{{\scriptstyle \mathrm{Tr}}}{=} (\nabla \bm{\Omega }(\mathbf {r})) \mathbf {D} .\end{align}
n(r)= Tr (Ω(r))D.
(40)

To simplify notation, we henceforth collect the density variables n(r) and ∇n(r) in a generalized density vector ρ(r). This notation also simplifies a generalization of our implementation to other density variables such as the kinetic-energy density in meta-GGA functionals and density variables in spin DFT and current DFT.

The exchange–correlation energy and the exchange–correlation potential matrix are integrated on a numerical grid defined by a set of suitably chosen grid points ri and grid weights wi, according to

\begin{align}E_\text{xc} &\approx \sum _i w_i \epsilon _\text{xc} (\rho (\mathbf {r}_i)),\end{align}
Exciwiεxc(ρ(ri)),
(41)
\begin{align}(F_\text{xc})_{\mu \nu } &\approx \sum _i w_i \frac{\partial \epsilon _\text{xc} (\rho (\mathbf {r}_i))}{\partial \rho (\mathbf {r}_i)} \frac{\partial \rho (\mathbf {r}_i)}{\partial D_{\nu \mu }}\nonumber \\& = \sum _i w_i v_\text{xc} (\mathbf {r}_i) (\Omega _\rho )_{\mu \nu } (\mathbf {r}_i) .\end{align}
(Fxc)μνiwiεxc(ρ(ri))ρ(ri)ρ(ri)Dνμ=iwivxc(ri)(Ωρ)μν(ri).
(42)

When differentiating the exchange–correlation energy and potential matrix we ignore the contribution from the grid-weight derivatives. The importance of grid-weight derivatives in the evaluation of geometrical derivatives at the DFT level has been discussed by Baker et al.53 and Johnson and Frisch.17 The extension to higher order is not straightforward, and for this reason we use very large grids in order to minimize the errors arising from the lack of grid-weight derivative contributions, and the quality of the results has been verified by test calculations against numerically calculated derivatives.

For the implementation of DFT analytic cubic and quartic force constants, we need up to fourth-order geometrical derivatives of the exchange–correlation energy density (

$\epsilon _\text{xc}^a, \epsilon _\text{xc}^{ab}, \epsilon _\text{xc}^{abc}$
εxca,εxcab,εxcabc⁠, and
$\epsilon _\text{xc}^{abcd}$
εxcabcd
) and up to second-order geometric derivatives of the exchange–correlation potential matrix contributions (
$v_\text{xc}^a$
vxca
and
$v_\text{xc}^{ab}$
vxcab
). The exchange–correlation energy density derivatives are evaluated using the following expressions:

\begin{align}\epsilon _\text{xc}^{a} &= \frac{\partial \epsilon _\text{xc}}{\partial \rho } \rho ^{a},\end{align}
εxca=εxcρρa,
(43)
\begin{align}\epsilon _\text{xc}^{ab} &= \frac{\partial \epsilon _\text{xc}}{\partial \rho } \rho ^{ab} + \frac{\partial ^2 \epsilon _\text{xc}}{\partial \rho ^2} \rho ^{a} \rho ^{b},\end{align}
εxcab=εxcρρab+2εxcρ2ρaρb,
(44)
\begin{align}\epsilon _\text{xc}^{abc} &= \frac{\partial \epsilon _\text{xc}}{\partial \rho } \rho ^{abc} + \frac{\partial ^2 \epsilon _\text{xc}}{\partial \rho ^2} [ \rho ^{a} \rho ^{bc} + \rho ^{b} \rho ^{ac} + \rho ^{c} \rho ^{ab} ]\nonumber\\&\quad +\, \frac{\partial ^3 \epsilon _\text{xc}}{\partial \rho ^3} \rho ^{a} \rho ^{b} \rho ^{c},\end{align}
εxcabc=εxcρρabc+2εxcρ2[ρaρbc+ρbρac+ρcρab]+3εxcρ3ρaρbρc,
(45)
\begin{align}\epsilon _\text{xc}^{abcd} =\, & \frac{\partial \epsilon _\text{xc}}{\partial \rho } \rho ^{abcd} + \frac{\partial ^2 \epsilon _\text{xc}}{\partial \rho ^2} [ \rho ^{a} \rho ^{bcd} + \rho ^{b} \rho ^{acd}\nonumber\\& +\, \rho ^{c} \rho ^{abd} + \rho ^{d} \rho ^{abc} ] \nonumber \\& +\, \frac{\partial ^3 \epsilon _\text{xc}}{\partial \rho ^3} [ \rho ^{a} \rho ^{b} \rho ^{cd} + \rho ^{a} \rho ^{c} \rho ^{bd} + \rho ^{a} \rho ^{d} \rho ^{bc}\nonumber\\& +\, \rho ^{b} \rho ^{c} \rho ^{ad} + \rho ^{b} \rho ^{d} \rho ^{ac} + \rho ^{c} \rho ^{d} \rho ^{ab} ] \nonumber \\& +\, \frac{\partial ^4 \epsilon _\text{xc}}{\partial \rho ^4} \rho ^{a} \rho ^{b} \rho ^{c} \rho ^{d} ,\end{align}
εxcabcd=εxcρρabcd+2εxcρ2[ρaρbcd+ρbρacd+ρcρabd+ρdρabc]+3εxcρ3[ρaρbρcd+ρaρcρbd+ρaρdρbc+ρbρcρad+ρbρdρac+ρcρdρab]+4εxcρ4ρaρbρcρd,
(46)

where the arguments of densities, functional derivatives, and overlap distributions have been omitted for notational clarity.

In our code, the contractions of the functional derivative vectors with the perturbed generalized density vectors are not explicitly programmed. Instead, we obtain the perturbed exchange–correlation energy densities

$\epsilon _\text{xc}$
εxc directly from the XCFun program47,54 by forming a generalized density Taylor series expansion (ρ, ρa, ρb, ρab, …), which is internally contracted with the density functional Taylor expansion. This approach significantly reduces the complexity of the exchange–correlation integrator.

If the total energy had been variational with respect to the density ρ, then, according to the 2n + 1 rule, we would only need the first-order (second-order) perturbed densities for the cubic (quartic) force field. In our case, the energy is variational with respect to the AO density matrix D, which means that we still need the second- and third-order (third- and fourth-order) perturbed densities.

This dependence is given as

\begin{align}\rho ^{a} &\stackrel{{\scriptstyle \mathrm{Tr}}}{=} \bm{\Omega }_\rho ^{a} \mathbf {D} + \bm{\Omega }_\rho \mathbf {D}^{a},\end{align}
ρa= Tr ΩρaD+ΩρDa,
(47)
\begin{align}\rho ^{ab} &\stackrel{{\scriptstyle \mathrm{Tr}}}{=} \bm{\Omega }_\rho ^{ab} \mathbf {D} + \bm{\Omega }_\rho ^{a} \mathbf {D}^{b} + \bm{\Omega }_\rho ^{b} \mathbf {D}^{a} + \bm{\Omega }_\rho \mathbf {D}^{ab},\end{align}
ρab= Tr ΩρabD+ΩρaDb+ΩρbDa+ΩρDab,
(48)
\begin{align}\rho ^{abc} \stackrel{{\scriptstyle \mathrm{Tr}}}{=}\, & \bm{\Omega }_\rho ^{abc} \mathbf {D}\nonumber \\&+\, \bm{\Omega }_\rho ^{ab} \mathbf {D}^{c} + \bm{\Omega }_\rho ^{ac} \mathbf {D}^{b} + \bm{\Omega }_\rho ^{bc} \mathbf {D}^{a} \nonumber \\&+\, \bm{\Omega }_\rho ^{a} \mathbf {D}^{bc} + \bm{\Omega }_\rho ^{b} \mathbf {D}^{ac} + \bm{\Omega }_\rho ^{c} \mathbf {D}^{ab} \nonumber \\&+\, \bm{\Omega }_\rho \mathbf {D}^{abc},\end{align}
ρabc= Tr ΩρabcD+ΩρabDc+ΩρacDb+ΩρbcDa+ΩρaDbc+ΩρbDac+ΩρcDab+ΩρDabc,
(49)
\begin{align}\rho ^{abcd} \stackrel{{\scriptstyle \mathrm{Tr}}}{=}\, & \bm{\Omega }_\rho ^{abcd} \mathbf {D} \nonumber \\&+\, \bm{\Omega }_\rho ^{abc} \mathbf {D}^{d} + \bm{\Omega }_\rho ^{abd} \mathbf {D}^{c} + \bm{\Omega }_\rho ^{acd} \mathbf {D}^{b} + \bm{\Omega }_\rho ^{bcd} \mathbf {D}^{a} \nonumber \\&+\, \bm{\Omega }_\rho ^{ab} \mathbf {D}^{cd} + \bm{\Omega }_\rho ^{ac} \mathbf {D}^{bd} + \bm{\Omega }_\rho ^{ad} \mathbf {D}^{bc} + \bm{\Omega }_\rho ^{bc} \mathbf {D}^{ad}\nonumber\\& +\, \bm{\Omega }_\rho ^{bd} \mathbf {D}^{ac} + \bm{\Omega }_\rho ^{cd} \mathbf {D}^{ab} \nonumber\\&+\, \bm{\Omega }_\rho ^{a} \mathbf {D}^{bcd} + \bm{\Omega }_\rho ^{b} \mathbf {D}^{acd} + \bm{\Omega }_\rho ^{c} \mathbf {D}^{abd} + \bm{\Omega }_\rho ^{d} \mathbf {D}^{abc} \nonumber \\&+\, \bm{\Omega }_\rho \mathbf {D}^{abcd} .\end{align}
ρabcd= Tr ΩρabcdD+ΩρabcDd+ΩρabdDc+ΩρacdDb+ΩρbcdDa+ΩρabDcd+ΩρacDbd+ΩρadDbc+ΩρbcDad+ΩρbdDac+ΩρcdDab+ΩρaDbcd+ΩρbDacd+ΩρcDabd+ΩρdDabc+ΩρDabcd.
(50)

Depending on the perturbation order, many of the above terms are omitted when applying the 2n + 1 rule to the density matrix. Note that the omitted terms are not zero by themselves, but only in combination with non-exchange–correlation terms containing the same density matrices. Here we have used

\begin{align}\bm{\Omega }_\rho ^{a} &= -2 \bm{\Omega }_\rho ^{a,0},\end{align}
Ωρa=2Ωρa,0,
(51)
\begin{align}\bm{\Omega }_\rho ^{ab} &= 2 \bigl [ \bm{\Omega }_\rho ^{ab,0} + \bm{\Omega }_\rho ^{a,b} \bigr ],\end{align}
Ωρab=2Ωρab,0+Ωρa,b,
(52)
\begin{align}\bm{\Omega }_\rho ^{abc} &= -2 \bigl [ \bm{\Omega }_\rho ^{abc,0} + \bm{\Omega }_\rho ^{ab,c} + \bm{\Omega }_\rho ^{ac,b} + \bm{\Omega }_\rho ^{a,bc} \bigr ],\end{align}
Ωρabc=2Ωρabc,0+Ωρab,c+Ωρac,b+Ωρa,bc,
(53)
\begin{align}\bm{\Omega }_\rho ^{abcd} &= 2 \bigl [ \bm{\Omega }_\rho ^{abcd,0} + \bm{\Omega }_\rho ^{abc,d} + \bm{\Omega }_\rho ^{abd,c} + \bm{\Omega }_\rho ^{ab,cd} \nonumber \\& \quad +\, \bm{\Omega }_\rho ^{acd,b} + \bm{\Omega }_\rho ^{ac,bd} + \bm{\Omega }_\rho ^{ad,bc} + \bm{\Omega }_\rho ^{a,bcd} \bigr ],\end{align}
Ωρabcd=2[Ωρabcd,0+Ωρabc,d+Ωρabd,c+Ωρab,cd+Ωρacd,b+Ωρac,bd+Ωρad,bc+Ωρa,bcd],
(54)

collecting

\begin{align}( \Omega ^{p,q})_{\mu \nu } &= \chi _\mu ^{*p} \chi _\nu ^{q},\end{align}
(Ωp,q)μν=χμ*pχνq,
(55)
\begin{align}(\nabla \Omega ^{p,q})_{\mu \nu } &= \big(\nabla \chi _\mu ^{*p}\big) \chi _\nu ^{q} + \chi _\mu ^{*p} \big(\nabla \chi _\nu ^{q}\big),\end{align}
(Ωp,q)μν=χμ*pχνq+χμ*pχνq,
(56)

into the generalized overlap distribution vector

$(\Omega _\rho ^{p,q})_{\mu \nu }$
(Ωρp,q)μν⁠.

Having discussed exchange–correlation energy density contributions, we now turn to the exchange–correlation potential matrix contributions. The perturbations can either act on the generalized overlap distribution or on the functional derivative term, giving

\begin{align}[ v_\text{xc} (\Omega _\rho )_{\mu \nu } ]^{a} &= v_\text{xc}^{a} (\Omega _\rho )_{\mu \nu } + v_\text{xc} \big(\Omega _\rho ^{a}\big)_{\mu \nu },\end{align}
[vxc(Ωρ)μν]a=vxca(Ωρ)μν+vxcΩρaμν,
(57)
\begin{align}[ v_\text{xc} (\Omega _\rho )_{\mu \nu } ]^{ab} =\, & v_\text{xc}^{ab} (\Omega _\rho )_{\mu \nu } + v_\text{xc}^{a} \big(\Omega _\rho ^{b} \big)_{\mu \nu }\nonumber\\& +\, v_\text{xc}^{b} \big(\Omega _\rho ^{a} \big)_{\mu \nu } + v_\text{xc} \big(\Omega _\rho ^{ab}\big)_{\mu \nu },\end{align}
[vxc(Ωρ)μν]ab=vxcab(Ωρ)μν+vxcaΩρbμν+vxcbΩρaμν+vxcΩρabμν,
(58)

where we have used

\begin{align}v_\text{xc}^{a} &= \frac{\partial ^2 \epsilon _\text{xc}}{\partial \rho ^2} \rho ^{a},\end{align}
vxca=2εxcρ2ρa,
(59)
\begin{align}v_\text{xc}^{ab} &= \frac{\partial ^3 \epsilon _\text{xc}}{\partial \rho ^3} \rho ^{a} \rho ^{b} + \frac{\partial ^2 \epsilon _\text{xc}}{\partial \rho ^2} \rho ^{ab} .\end{align}
vxcab=3εxcρ3ρaρb+2εxcρ2ρab.
(60)

Finally, we note that an efficient implementation of the density evaluation and matrix distribution routines is essential, bearing in mind the large number of terms that need to be evaluated. We evaluate both the densities and the matrix elements in a blocked manner, allowing mathematical matrix–matrix multiplication libraries to be used in conjunction with efficient pre-screening techniques.

To calculate the cubic and quartic force constants, the recursive implementation49 of the open-ended response-theory framework by Thorvaldsen et al.43 has been used, as provided by the OpenRSP program package. We use the Dalton program package55 as a backend for the calculation of undifferentiated integrals and the unperturbed and perturbed density matrices, which are obtained with the linear response solver of Jørgensen et al.56 The calculation of properties associated with one-electron integrals was carried out using the Gen1Int library,57 building on the flexible integral evaluation scheme of Gao and co-workers.45 The differentiated two-electron integrals were mainly calculated using Thorvaldsen's Cgto-Diff-Eri code,58 which uses the scheme of Reine et al. for the evaluation of differentiated two-electron integrals using solid-harmonic Gaussians,46 but some of the lower-order contributions were calculated using Dalton. The differentiated exchange–correlation energy and potential contributions needed for the cubic and quartic force constants were calculated using the XCFun library,54 which uses automatic differentiation for evaluating the derivatives of the exchange–correlation energy.47 We have used an in-house integrator to perform the integration of the exchange–correlation contributions.

Cubic and quartic force constants in the Cartesian basis were calculated at the HF and DFT levels of theory for methane, ethane, benzene, and aniline. For methane, we performed a basis-set convergence study using the 6-31G59 and the correlation-consistent basis sets60 of double-, triple-, and quadruple-zeta quality (cc-pVDZ, cc-pVTZ, and cc-pVQZ). For the other molecules, we have used the cc-pVTZ basis set for ethane and the cc-pVDZ basis set for benzene and aniline. In order to explore the sensitivity of the results to the choice of exchange–correlation functional, both the BLYP61–64 and the B3LYP65 functionals have been used.

For the HF and B3LYP calculations, the geometry was optimized and the molecular Hessian was calculated at the DFT (B3LYP) level of theory with the Dalton program package,55 using the same basis as in the anharmonic force field calculations. The B3LYP Hessian was used in the vibrational analysis—both for evaluating the harmonic vibrational frequencies and for transforming the anharmonic force constants to a reduced normal coordinate basis26 before evaluating the fundamental frequencies (vide infra). Although not consistent, this approach circumvents the well-known deficiencies of the HF method for harmonic frequencies and allows us to get a better impression of the quality of the HF cubic and quartic force constants. For the calculations involving the BLYP functional, the geometry optimization, the vibrational analysis, and the cubic and quartic force constants were calculated using this functional, allowing us to compare directly the results obtained using the BLYP and B3LYP functionals.

In the calculations, we have converged the coupled-perturbed Kohn–Sham equations to a relative norm of 10−6, observing no problems with convergence of the response equations. To reduce the errors arising from the lack of grid-weight derivative contributions, we have used an ultrafine grid with a radial quadrature accuracy of 2 × 10−15 and with an angular expansion order of 64.

From the cubic and quartic force constants, anharmonic frequency corrections were calculated using the generalized vibrational second-order perturbation (GVPT2) model,66,67 in which terms that are too large because of Fermi resonances are excluded from the perturbational treatment68 and treated variationally.41 The threshold criteria for the identification of Fermi resonances are those used by Bloino and Barone69 except for ethane, where the threshold for the Martin parameters was increased to 1.5 cm−1 from the default value of 1 cm−1, to avoid a splitting of degenerate modes due to unevenly distributed interactions between these modes and a different set of two degenerate modes, which would otherwise lead to an unsymmetric identification of Fermi resonances. We refer to Refs. 41,69 for more details about the GVPT2 model and the treatment of Fermi resonances. All rotational effects, as described by the rotational constants and the Coriolis coupling constants in the GVPT2 scheme, are disregarded in the present work.

In Tables I–IV, we have listed the calculated fundamental frequencies of methane, ethane, benzene, and aniline, respectively. Regarding the basis-set dependence of the anharmonic corrections, the methane results in Table I indicate it is rather weak, with small differences between 6-31G and cc-pVQZ anharmonic corrections, the largest difference between the HF/6-31G and HF/cc-pVQZ results being 6 cm−1 (4%).

Table I.

Harmonic fundamental vibrational frequencies ω, corrected fundamental frequencies ν, and anharmonic vibrational corrections δ for methane. All values are in cm−1.

ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPδBLYPωBLYPωexpνexpa
6-31G 
3165 2999 −166 3011 −154 2933 −157 3090     
3043 2910 −132 2920 −122 2847 −126 2973     
1601 1552 −48 1557 −44 1521 −45 1566     
1403 1357 −45 1362 −41 1325 −42 1367     
cc-pVDZ 
3146 2977 −169 2988 −158 2906 −162 3068     
3025 2887 −138 2892 −133 2817 −137 2954     
1530 1484 −46 1488 −42 1451 −43 1494     
1309 1264 −46 1268 −41 1233 −42 1275     
cc-pVTZ 
3129 2971 −158 2981 −148 2906 −152 3058     
3027 2900 −127 2904 −122 2836 −127 2963     
1559 1511 −48 1514 −44 1481 −45 1526     
1341 1294 −47 1298 −43 1267 −44 1311     
cc-pVQZ 
3127 2967 −160 2979 −148 2903 −152 3055 3156.8 3022.5 
3025 2896 −129 2902 −122 2833 −127 2960 3025.5 2920.9 
1558 1510 −48 1514 −44 1481 −44 1524 1582.7 1532.4 
1340 1293 −47 1298 −43 1267 −43 1310 1367.4 1308.4 
ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPδBLYPωBLYPωexpνexpa
6-31G 
3165 2999 −166 3011 −154 2933 −157 3090     
3043 2910 −132 2920 −122 2847 −126 2973     
1601 1552 −48 1557 −44 1521 −45 1566     
1403 1357 −45 1362 −41 1325 −42 1367     
cc-pVDZ 
3146 2977 −169 2988 −158 2906 −162 3068     
3025 2887 −138 2892 −133 2817 −137 2954     
1530 1484 −46 1488 −42 1451 −43 1494     
1309 1264 −46 1268 −41 1233 −42 1275     
cc-pVTZ 
3129 2971 −158 2981 −148 2906 −152 3058     
3027 2900 −127 2904 −122 2836 −127 2963     
1559 1511 −48 1514 −44 1481 −45 1526     
1341 1294 −47 1298 −43 1267 −44 1311     
cc-pVQZ 
3127 2967 −160 2979 −148 2903 −152 3055 3156.8 3022.5 
3025 2896 −129 2902 −122 2833 −127 2960 3025.5 2920.9 
1558 1510 −48 1514 −44 1481 −44 1524 1582.7 1532.4 
1340 1293 −47 1298 −43 1267 −43 1310 1367.4 1308.4 
a

Experimental data taken from Ref. 74 and ordered by decreasing frequency.

Table II.

Harmonic fundamental vibrational frequencies ω, corrected fundamental frequencies ν, and anharmonic vibrational corrections δ for ethane using the cc-pVTZ basis set. All values are in cm−1.

ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPδBLYPωBLYPνexpa
3093 2945 −148 2953 −140 2875 −145 3020 2977.7 
3068 2923 −145 2932 −136 2854 −141 2994 2955.0 
3025 2867 −159 2870 −155 2800 −158 2958 2920 
3024 2867 −158 2868 −156 2797 −159 2956 2915 
1507 1458 −48 1462 −45 1427 −46 1473 1471.6 
1503 1452 −51 1456 −47 1422 −48 1469 1468.1 
1423 1387 −36 1391 −32 1352 −33 1385 1388.4 
1413 1376 −37 1379 −34 1346 −35 1381 1379.2 
1223 1188 −34 1191 −31 1159 −32 1191 1190 
10 995 969 −27 972 −23 934 −25 958 994.8 
11 827 823 −4 821 −5 802 −6 809 821.6 
12 305 267 −38 273 −32 265 −32 297 289 
Mean absolute error relative to experiment in percent 
  2.81 1.55   1.22   3.80   1.17   
ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPδBLYPωBLYPνexpa
3093 2945 −148 2953 −140 2875 −145 3020 2977.7 
3068 2923 −145 2932 −136 2854 −141 2994 2955.0 
3025 2867 −159 2870 −155 2800 −158 2958 2920 
3024 2867 −158 2868 −156 2797 −159 2956 2915 
1507 1458 −48 1462 −45 1427 −46 1473 1471.6 
1503 1452 −51 1456 −47 1422 −48 1469 1468.1 
1423 1387 −36 1391 −32 1352 −33 1385 1388.4 
1413 1376 −37 1379 −34 1346 −35 1381 1379.2 
1223 1188 −34 1191 −31 1159 −32 1191 1190 
10 995 969 −27 972 −23 934 −25 958 994.8 
11 827 823 −4 821 −5 802 −6 809 821.6 
12 305 267 −38 273 −32 265 −32 297 289 
Mean absolute error relative to experiment in percent 
  2.81 1.55   1.22   3.80   1.17   
a

Experimental data taken from Ref. 75 and ordered by decreasing frequency.

Table III.

Harmonic fundamental vibrational frequencies ω, corrected fundamental frequencies ν, and anharmonic vibrational corrections δ for benzene using the cc-pVDZ basis set. All values are in cm−1.

ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPaδBLYPωBLYPνexpb
3198 3047 −151 3054 −144 2960 −155 3115 3073.942 
3187 3029 −159 3034 −153 2975 −130 3104 (3057) 
3171 3027 −144 3035 −136 2944 −144 3088 3056.7 
3161 2991 −169 2996 −165 2901 −177 3078 3064.3674 
1645 1596 −49 1599 −46 1538 −45 1583 1600.9764 
1506 1475 −32 1476 −30 1430 −31 1462 1483.9854 
1364 1331 −33 1333 −31 1294 −33 1327 (1350) 
1356 1346 −10 1330 −26 1298 −30 1328 1309.4 
1186 1171 −15 1171 −15 1140 −16 1156 1177.776 
10 1162 1152 −10 1150 −12 1123 −12 1136 1149.7 
11 1059 1038 −21 1039 −20 1007 −21 1028 1038.2670 
12 1022 993 −29 982 −39 943 −46 989 993.071 
13 1019 1002 −17 1004 −15 971 −16 986 (1010) 
14 1013 997 −16 999 −14 973 −15 987 (990) 
15 986 961 −26 959 −28 920 −31 952 (967) 
16 866 844 −22 843 −23 814 −25 839 847.1 
17 723 709 −14 705 −18 681 −21 702 (707) 
18 691 678 −13 677 −14 656 −16 672 673.97465 
19 618 612 −6 611 −7 596 −7 603 608.13 
20 414 404 −10 404 −10 391 −11 402 (398) 
Mean absolute error relative to experiment in percent 
  2.43 0.83   0.76   3.30   1.13   
ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPaδBLYPωBLYPνexpb
3198 3047 −151 3054 −144 2960 −155 3115 3073.942 
3187 3029 −159 3034 −153 2975 −130 3104 (3057) 
3171 3027 −144 3035 −136 2944 −144 3088 3056.7 
3161 2991 −169 2996 −165 2901 −177 3078 3064.3674 
1645 1596 −49 1599 −46 1538 −45 1583 1600.9764 
1506 1475 −32 1476 −30 1430 −31 1462 1483.9854 
1364 1331 −33 1333 −31 1294 −33 1327 (1350) 
1356 1346 −10 1330 −26 1298 −30 1328 1309.4 
1186 1171 −15 1171 −15 1140 −16 1156 1177.776 
10 1162 1152 −10 1150 −12 1123 −12 1136 1149.7 
11 1059 1038 −21 1039 −20 1007 −21 1028 1038.2670 
12 1022 993 −29 982 −39 943 −46 989 993.071 
13 1019 1002 −17 1004 −15 971 −16 986 (1010) 
14 1013 997 −16 999 −14 973 −15 987 (990) 
15 986 961 −26 959 −28 920 −31 952 (967) 
16 866 844 −22 843 −23 814 −25 839 847.1 
17 723 709 −14 705 −18 681 −21 702 (707) 
18 691 678 −13 677 −14 656 −16 672 673.97465 
19 618 612 −6 611 −7 596 −7 603 608.13 
20 414 404 −10 404 −10 391 −11 402 (398) 
Mean absolute error relative to experiment in percent 
  2.43 0.83   0.76   3.30   1.13   
a

Modes 7 and 8 and modes 13 and 14 were switched after an analysis of the normal coordinates to agree with the B3LYP ordering.

b

Experimental data taken from Ref. 76 and ordered by decreasing frequency.

Table IV.

Harmonic fundamental vibrational frequencies ω, corrected fundamental frequencies ν, and anharmonic vibrational corrections δ for aniline using the cc-pVDZ basis set. All values are in cm−1.

ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPaδBLYPωBLYPνexpb
3626 3457 −169 3452 −174 3326 −183 3509 3485 
3528 3371 −156 3368 −160 3244 −169 3413 3401 
3198 3052 −146 3059 −139 2972 −143 3115 3094 
3179 3025 −154 3032 −148 2939 −157 3096 3074 
3173 3034 −140 3042 −132 2950 −140 3090 3050 
3157 3011 −146 3019 −138 2935 −139 3074 3040 
3156 2996 −160 3002 −154 2908 −165 3073 3013 
1665 1622 −43 1626 −40 1564 −40 1604 1618 
1635 1588 −48 1592 −43 1528 −43 1572 1603 
10 1635 1592 −43 1596 −39 1548 −39 1586 1590 
11 1530 1495 −34 1497 −32 1448 −33 1481 1501 
12 1496 1463 −33 1466 −31 1420 −31 1451 1470 
13 1369 1349 −19 1338 −31 1306 −35 1341 1324 
14 1349 1324 −25 1324 −24 1286 −26 1312 1308 
15 1311 1285 −26 1286 −25 1245 −25 1270 1278 
16 1188 1170 −18 1170 −18 1138 −19 1157 1173 
17 1166 1153 −12 1153 −12 1123 −15 1138 1152 
18 1134 1112 −22 1115 −19 1086 −19 1105 1115 
19 1068 1048 −21 1053 −15 1022 −16 1037 1054 
20 1048 1030 −18 1031 −17 998 −18 1016 1028 
21 1006 986 −20 989 −17 959 −18 977 996 
22 989 963 −26 956 −33 915 −39 954 968 
23 967 942 −25 941 −26 901 −30 930 957 
24 885 858 −27 859 −25 823 −29 851 874 
25 833 809 −24 812 −21 786 −22 808 823 
26 828 806 −22 806 −22 775 −24 799 808 
27 766 740 −26 744 −21 716 −23 739 747 
28 706 692 −14 691 −15 668 −17 685 689 
29 632 623 −8 624 −8 606 −9 615 619 
30 614 379 −235 494 −120 487 −111 598 (440/490) 
31 534 526 −8 528 −7 511 −8 519 526 
32 509 486 −23 493 −16 478 −15 493 501 
33 419 410 −9 410 −9 397 −9 406 415 
34 382 381 −1 380 −2 370 −3 372 390 
35 289 266 −23 286 −3 288 −4 292   
36 223 217 −6 218 −5 210 −5 216 233 
Mean absolute error relative to experiment in percentc 
  3.06 1.68   0.94   3.75   2.12   
ModeωB3LYPνHFδHFνB3LYPδB3LYPνBLYPaδBLYPωBLYPνexpb
3626 3457 −169 3452 −174 3326 −183 3509 3485 
3528 3371 −156 3368 −160 3244 −169 3413 3401 
3198 3052 −146 3059 −139 2972 −143 3115 3094 
3179 3025 −154 3032 −148 2939 −157 3096 3074 
3173 3034 −140 3042 −132 2950 −140 3090 3050 
3157 3011 −146 3019 −138 2935 −139 3074 3040 
3156 2996 −160 3002 −154 2908 −165 3073 3013 
1665 1622 −43 1626 −40 1564 −40 1604 1618 
1635 1588 −48 1592 −43 1528 −43 1572 1603 
10 1635 1592 −43 1596 −39 1548 −39 1586 1590 
11 1530 1495 −34 1497 −32 1448 −33 1481 1501 
12 1496 1463 −33 1466 −31 1420 −31 1451 1470 
13 1369 1349 −19 1338 −31 1306 −35 1341 1324 
14 1349 1324 −25 1324 −24 1286 −26 1312 1308 
15 1311 1285 −26 1286 −25 1245 −25 1270 1278 
16 1188 1170 −18 1170 −18 1138 −19 1157 1173 
17 1166 1153 −12 1153 −12 1123 −15 1138 1152 
18 1134 1112 −22 1115 −19 1086 −19 1105 1115 
19 1068 1048 −21 1053 −15 1022 −16 1037 1054 
20 1048 1030 −18 1031 −17 998 −18 1016 1028 
21 1006 986 −20 989 −17 959 −18 977 996 
22 989 963 −26 956 −33 915 −39 954 968 
23 967 942 −25 941 −26 901 −30 930 957 
24 885 858 −27 859 −25 823 −29 851 874 
25 833 809 −24 812 −21 786 −22 808 823 
26 828 806 −22 806 −22 775 −24 799 808 
27 766 740 −26 744 −21 716 −23 739 747 
28 706 692 −14 691 −15 668 −17 685 689 
29 632 623 −8 624 −8 606 −9 615 619 
30 614 379 −235 494 −120 487 −111 598 (440/490) 
31 534 526 −8 528 −7 511 −8 519 526 
32 509 486 −23 493 −16 478 −15 493 501 
33 419 410 −9 410 −9 397 −9 406 415 
34 382 381 −1 380 −2 370 −3 372 390 
35 289 266 −23 286 −3 288 −4 292   
36 223 217 −6 218 −5 210 −5 216 233 
Mean absolute error relative to experiment in percentc 
  3.06 1.68   0.94   3.75   2.12   
a

Modes 9 and 10 were switched after an analysis of the normal coordinates to correspond to the ordering of the B3LYP normal modes.

b

Experimental data taken from Ref. 77 and ordered by decreasing frequency.

c

Excluding mode 35 for which no experimental data exist, and using the experimental value of 490 cm−1 for mode 30.

Regarding the differences between the various levels of electronic-structure theory, we see from Table I that the difference between the HF and the B3LYP corrections (both calculated using B3LYP geometries, harmonic frequencies, and normal coordinates) are not large for methane, the absolute value of the B3LYP corrections being on average smaller than 10%. From the results for the larger molecules in Tables II–IV, this behaviour appears to be a general trend, but with some discrepancies being slightly larger than 10%. Also, in a few cases, the B3LYP anharmonic corrections are larger than the corresponding HF corrections—for modes 8 and 12 in benzene and for mode 13 in aniline, for instance, the B3LYP correction is substantially more negative than the HF correction. These differences are mostly the result of differences between the HF and B3LYP values for the associated diagonal (iiii) quartic force constants; for mode 12 in benzene, differences in the semidiagonal (iijj) quartic force constants are also important. Overall, the BLYP anharmonic corrections are in good agreement with the B3LYP corrections, but with some exceptions. For mode 2 in benzene, for example, the anharmonic correction is substantially less negative with the BLYP exchange–correlation functional, because of different identifications of Fermi resonances at different levels of theory. In general, however, the BLYP anharmonic corrections are slightly more negative than the B3LYP corrections.

Among the different levels of theory applied here, the B3LYP results are in best agreement with the experimental fundamental frequencies. The listed HF results are of comparable quality but have been obtained at the B3LYP geometry and are based on the B3LYP harmonic vibrational analysis; they would have been considerably worse had they been based on HF quantities alone. In any case, the calculation of HF anharmonic corrections based on DFT geometries and harmonic frequencies should be a viable approach in many cases. Likewise, we expect harmonic frequencies calculated at higher levels of theory—for instance, at the coupled-cluster level of theory—to perform well in combination with SCF anharmonic corrections; indeed, such an approach has been used in earlier works.38,70,71

The BLYP results consistently show the poorest agreement with experiment. However, much of the discrepancy arises from inaccurate harmonic frequencies. For all systems, the BLYP corrections are mostly close to the HF and B3LYP corrections—however, for methane, the BLYP correspondence to experiment for the harmonic frequencies is clearly inferior to the B3LYP correspondence. This is further accentuated when we note that, for the high-frequency modes in methane, the derived experimental anharmonic corrections are in general smaller than the calculated ones, suggesting that the experimental harmonic frequencies are underestimated. In general, the agreement between the B3LYP and BLYP anharmonic corrections is good, supporting the notion that it is the harmonic frequencies that are poorly described by the BLYP functional.

In order to get a better global understanding of the performance of the different computational levels, we have in Tables II–IV also collected the mean absolute errors (MAEs) for the different computational levels compared to experiment. We note that the harmonic B3LYP frequencies in general are about 2.5% off the experimental frequencies, in line with the recommended scaling factors often used for B3LYP calculations of 0.9679.72 We note that for aniline, the MAE is somewhat larger than for the other molecules, but this is largely due to mode 30 which displays a MAE of almost 25%. Excluding this mode, the MAE for the B3LYP harmonic frequencies is 2.4%. Including anharmonic corrections to the B3LYP harmonic frequencies, either at the HF or B3LYP levels of theory, brings the MAE down to about 1% with the HF error being slightly larger and the B3LYP error slightly smaller than 1%, the differences in general being small. However, once again mode 30 in aniline is an interesting case, clearly showing the superiority of the B3LYP method over the HF method for difficult cases, as the HF fundamental frequency for this mode is off by 23% from the experimental value, B3LYP instead being only 0.8% off the experimental data.

The BLYP model in contrast provides a much better MAE than the B3LYP model for harmonic frequencies. However, this agreement is fortuitous and when adding the anharmonic corrections to the BLYP data, the MAE actually increases, from about 1% to 3%–4%. If we instead add the BLYP corrections to the B3LYP harmonic frequencies, the MAE becomes comparable to that obtained with HF (about 1%).

The differences between the anharmonic corrections obtained at various levels of theory are relatively small. However, for certain spectroscopic processes that have recently received increased attention—for example, the doubly vibrationally enhanced four-wave-mixing using two incident infrared lasers discussed in Ref. 73—the principal two-dimensional spectroscopic features may consist of closely spaced peaks separated by a distance related to the anharmonic coupling between the modes involved, in addition to lower-order contributions. The shape of such features can be very sensitive to the values of the anharmonic corrections, putting higher demands on the accuracy in the calculated anharmonic corrections for two-dimensional than for one-dimensional spectroscopies. Our results suggest that the inclusion of correlation effects in the calculated anharmonic vibrational corrections by means of DFT may be worthwhile, in spite of the added computational cost. Finally, we note that the rotational effects, which have been neglected in our work, should not be sufficiently large to affect our conclusions.

We have presented the first analytic DFT implementation of cubic and quartic force constants. Our implementation is based on a recursive, open-ended, AO- and density-matrix-based energy derivative approach for SCF methods (HF and DFT). In combination with open-ended schemes for one- and two-electron integrals and for exchange–correlation contributions, this approach allows for a compact and efficient code for the analytic evaluation of anharmonic force constants.

We have demonstrated that the hybrid B3LYP exchange–correlation functional is superior to the generalized-gradient BLYP functional for calculating the fundamental frequencies of several small- and medium-sized molecules. However, this observed superiority of the B3LYP model is mostly the result of improvements in the harmonic force field—the differences between the B3LYP and BLYP fundamental frequencies are much larger than the differences in the anharmonic corrections. This effect is also reflected in the results obtained using the HF model: the HF anharmonic corrections are in good agreement with the B3LYP corrections when the HF calculations are based on the B3LYP structure and harmonic force field.

In future work, we intend to apply the calculated cubic and quartic force constants to obtain fundamental vibrational frequencies for use in various spectroscopic designs and to obtain anharmonic corrections to spectroscopic intensities—in particular with an eye towards multidimensional vibrational spectroscopies, where anharmonic effects are important.

This work has received support from the Research Council of Norway through a Centre of Excellence Grant (Grant No. 179568/V30) and a research grant (Grant No. 191251), the European Research Council through a ERC Starting Grant (Grant No. 279619), and from the Norwegian Supercomputer Program through a grant of computer time. T.H. and U.E. acknowledge support from the European Research Council under the European Union Seventh Framework Program through the Advanced Grant ABACUS, ERC Grant Agreement No. 267683. The work was also supported by COST (Action CoDECS: COnvergent Distributed Environment for Computational Spectroscopy). We are grateful to Julien Bloino and Vincenzo Barone for helpful discussions.

1.
S.
Bratoz
,
Colloq. Int. C.N.R.S.
82
,
287
(
1958
).
2.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
3.
K.
Thomson
and
P.
Swanstrøm
,
Mol. Phys.
26
,
735
(
1973
).
4.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
M. A.
Vincent
,
J. F.
Gaw
, and
H. F.
Schaefer
,
Chem. Phys.
72
,
131
(
1982
).
5.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
,
J. Mol. Struct.: THEOCHEM
103
,
183
(
1983
).
6.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem.
16
(
S13
),
225
(
1979
).
7.
R.
Krishnan
,
H. B.
Schlegel
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4654
(
1980
).
8.
M. R.
Hoffmann
,
D. J.
Fox
,
J. F.
Gaw
,
Y.
Osamura
,
Y.
Yamaguchi
,
R. S.
Grev
,
G. B.
Fitzgerald
,
H. F.
Schaefer
,
P. J.
Knowles
, and
N. C.
Handy
,
J. Chem. Phys.
80
,
2660
(
1984
).
9.
P.
Jørgensen
and
J.
Simons
,
J. Chem. Phys.
79
,
334
(
1983
).
10.
T. U.
Helgaker
,
J.
Almlöf
,
H. J. A.
Jensen
, and
P.
Jørgensen
,
J. Chem. Phys.
84
,
6266
(
1986
).
11.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
,
Chem. Phys. Lett.
120
,
151
(
1985
).
12.
R. J.
Harrison
,
G. B.
Fitzgerald
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
124
,
291
(
1986
).
13.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
,
J. Chem. Phys.
92
,
4924
(
1990
).
14.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
15.
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
Theor. Chem. Acc.
100
,
5
(
1998
).
16.
A.
Komornicki
and
G. B.
Fitzgerald
,
J. Chem. Phys.
98
,
1398
(
1993
).
17.
B. G.
Johnson
and
M. J.
Frisch
,
Chem. Phys. Lett.
216
,
133
(
1993
).
18.
P.
Deglmann
,
F.
Furche
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
362
,
511
(
2002
).
19.
J. F.
Stanton
and
J.
Gauss
,
Int. Rev. Phys. Chem.
19
,
61
(
2000
).
20.
R.
Bast
,
U.
Ekström
,
B.
Gao
,
T.
Helgaker
,
K.
Ruud
, and
A. J.
Thorvaldsen
,
Phys. Chem. Chem. Phys.
13
,
2627
(
2011
).
21.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
,
Chem. Rev.
112
,
543
(
2012
).
22.
J. F.
Gaw
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
N. C.
Handy
,
J. Chem. Phys.
85
,
5132
(
1986
).
23.
S. M.
Colwell
,
D.
Jayatilaka
,
P. E.
Maslen
,
R. D.
Amos
, and
N. C.
Handy
,
Int. J. Quantum Chem.
40
,
179
(
1991
).
24.
P. E.
Maslen
,
D.
Jayatilaka
,
S. M.
Colwell
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
95
,
7409
(
1991
).
25.
G. H.
Herzberg
,
Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
Van Nostrand Reinhold
,
Princeton
,
1966
).
26.
I. M.
Mills
, in
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic
,
New York
,
1972
), pp.
115
140
.
27.
I. M.
Mills
,
J. Phys. Chem.
80
,
1187
(
1976
).
28.
P.-O.
Åstrand
,
K.
Ruud
, and
D.
Sundholm
,
Theor. Chem. Acc.
103
,
365
(
2000
).
29.
P.-O.
Åstrand
,
K.
Ruud
, and
P. R.
Taylor
,
J. Chem. Phys.
112
,
2655
(
2000
).
30.
M. L.
Grenier-Besson
,
J. Phys. Radium
21
,
555
(
1960
).
31.
M. L.
Grenier-Besson
,
J. Phys. France
25
,
757
(
1964
).
32.
J.
Breidung
,
W.
Thiel
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
110
,
3687
(
1999
).
33.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
7
,
3702
(
2011
).
34.
K.
Aarset
,
A. G.
Császár
,
E. L.
Sibert
,
W. D.
Allen
,
H. F.
Schaefer
,
W.
Klopper
, and
J.
Noga
,
J. Chem. Phys.
112
,
4053
(
2000
).
35.
D. A.
Matthews
and
J. F.
Stanton
,
Mol. Phys.
107
,
213
(
2009
).
36.
M. E.
Harding
,
J.
Vázquez
,
J.
Gauss
,
J. F.
Stanton
, and
M.
Kállay
,
J. Chem. Phys.
135
,
044513
(
2011
).
37.
D.
Begue
,
P.
Carbonniere
,
V.
Barone
, and
C.
Pouchan
,
Chem. Phys. Lett.
415
,
25
(
2005
).
38.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
6
,
828
(
2010
).
39.
V.
Barone
,
J.
Bloino
,
C. A.
Guido
, and
F.
Lipparini
,
Chem. Phys. Lett.
496
,
157
(
2010
).
40.
V.
Barone
,
J. Chem. Phys.
120
,
3059
(
2004
).
41.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
42.
J.
Gong
,
J. F.
Stanton
,
M.
Ringholm
, and
K.
Ruud
(unpublished).
43.
A. J.
Thorvaldsen
,
K.
Ruud
,
K.
Kristensen
,
P.
Jørgensen
, and
S.
Coriani
,
J. Chem. Phys.
129
,
214108
(
2008
).
44.
H.
Larsen
,
T.
Helgaker
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
115
,
10344
(
2001
).
45.
B.
Gao
,
A. J.
Thorvaldsen
, and
K.
Ruud
,
Int. J. Quantum Chem.
111
,
858
(
2011
).
46.
S.
Reine
,
E. I.
Tellgren
, and
T.
Helgaker
,
Phys. Chem. Chem. Phys.
9
,
4771
(
2007
).
47.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
,
J. Chem. Theory Comput.
6
,
1971
(
2010
).
48.
S.
Coriani
,
S.
Høst
,
B.
Jansik
,
L.
Thøgersen
,
J.
Olsen
,
P.
Jørgensen
,
S.
Reine
,
F.
Pawlowski
,
T.
Helgaker
, and
P.
Sałek
,
J. Chem. Phys.
126
,
154108
(
2007
).
49.
M.
Ringholm
,
D.
Jonsson
, and
K.
Ruud
, “
A general, recursive and open-ended response code
,” J. Comput. Chem. (submitted).
50.
K.
Kristensen
,
P.
Jørgensen
,
A. J.
Thorvaldsen
, and
T.
Helgaker
,
J. Chem. Phys.
129
,
214103
(
2008
).
51.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta
75
,
111
(
1989
).
52.
H.
Sellers
,
Int. J. Quantum Chem.
30
,
433
(
1986
);
H.
Sellers
,
Int. J. Quantum Chem.
30
,
713
(
1986
) (erratum).
53.
J.
Baker
,
J.
Andzelm
,
A.
Scheiner
, and
B.
Delley
,
J. Chem. Phys.
101
,
8894
(
1994
).
54.
U.
Ekström
, “
Xcfun library
,”
2010
, http://www.admol.org/xcfun.
55.
DALTON
,” A molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html.
56.
P.
Jørgensen
,
H. J. A.
Jensen
, and
J.
Olsen
,
J. Chem. Phys.
89
,
3654
(
1988
).
57.
B.
Gao
and
A. J.
Thorvaldsen
, “
GEN1INT Version 0.2.1
,”
2012
, Gen1Int is a library to evaluate the derivatives of one-electron integrals with respect to geometry perturbations, external electric and magnetic fields, and total rotational angular momentum at zero fields with contracted rotational London atomic orbitals, and is released under the GNU Lesser General Public License.
58.
A. J.
Thorvaldsen
, “
Cgto-diff-eri
,”
2
012, A library for the evaluation of geometry-differentiated 2e-integrals (dn/
${\rm dR}_k^n$
dR kn
), released under the GNU Lesser General Public License.
59.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
60.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
61.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
62.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
63.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
64.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
65.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
66.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
67.
D.
Papoušek
and
M. R.
Aliev
,
Molecular Vibrational-Rotational Spectra
(
Elsevier
,
Amsterdam
,
1981
).
68.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
69.
J.
Bloino
and
V.
Barone
,
J. Chem. Phys.
136
,
124108
(
2012
).
70.
P.
Carbonniere
,
T.
Lucca
,
C.
Pouchan
,
N.
Rega
, and
V.
Barone
,
J. Comput. Chem.
26
,
384
(
2005
).
71.
D.
Begue
,
P.
Carbonniere
, and
C.
Pouchan
,
J. Phys. Chem. A
109
,
4611
(
2005
).
72.
M. P.
Andersson
and
P.
Uvdal
,
J. Phys. Chem. A
109
,
2937
(
2005
).
73.
K.
Kwak
,
S.
Cha
,
M.
Cho
, and
J. C.
Wright
,
J. Chem. Phys.
117
,
5675
(
2002
).
74.
D. L.
Gray
and
A. G.
Robiette
,
Mol. Phys.
37
,
1901
(
1979
).
75.
J. L.
Duncan
,
R. A.
Kelly
,
G. D.
Nivellini
, and
F.
Tullini
,
J. Mol. Spectrosc.
98
,
87
(
1983
).
76.
L.
Goodman
,
A. G.
Ozkabak
, and
S. N.
Thakur
,
J. Phys. Chem.
95
,
9044
(
1991
).
77.
J. C.
Evans
,
Spectrochim. Acta
16
,
428
(
1960
).