Within the framework of Gibbsian thermodynamics, a binary droplet is regarded to consist of a uniform interior and dividing surface. The properties of the droplet interior are those of the bulk liquid solution, but the dividing surface is a fictitious phase whose chemical potentials cannot be rigorously determined. The state of the nucleus interior and free energy of nucleus formation can be found without knowing the surface chemical potentials, but the latter are still needed to determine the state of the whole nucleus (including the dividing surface) and develop the kinetics of nucleation. Thus it is necessary to recur to additional conjectures in order to build a complete, thermodynamic, and kinetic theory of nucleation within the framework of the Gibbsian approximation. Here we consider and analyze the problem of closing the Gibbsian approximation droplet model. We identify μ- and Γ-closure conjectures concerning the surface chemical potentials and excess surface coverages, respectively, for the droplet surface of tension. With these two closure conjectures, the Gibbsian approximation model of a binary droplet becomes complete so that one can determine both the surface and internal characteristics of the whole nucleus and develop the kinetic theory, based on this model. Theoretical results are illustrated by numerical evaluations for binary nucleation in a water–methanol vapor mixture at T=298.15 K. Numerical results show a striking increase in the droplet surface tension with decreasing droplet size at constant overall droplet composition. A comparison of the Gibbsian approximation with density functional calculations for a model surfactant system indicate that the excess surface coverages from the Gibbsian approximation are accurate enough for large droplets and droplets that are not too concentrated with respect to the solute.

1.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).
2.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, Boston, 1996).
3.
R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992).
4.
D. Oxtoby, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992).
5.
Nucleation Theory and Applications, edited by J. Schmelzer, G. Röpke, and V. B. Priezzhev (JINR, Dubna, 1999).
6.
J. Lothe and G. M. J. Pound, in Nucleation, edited by A. C. Zettlemoyer (Marcel-Dekker, New York, 1969).
7.
C.
Flageollet
,
M. Dihn
Cao
, and
P.
Mirabel
,
J. Chem. Phys.
72
,
544
(
1980
).
8.
G.
Wilemski
,
J. Phys. Chem.
91
,
2492
(
1987
).
9.
B. E.
Wyslouzil
,
J. H.
Seinfeld
,
R. C.
Flagan
, and
K.
Okuyama
,
J. Chem. Phys.
94
,
6827
(
1991
).
10.
A.
Laaksonen
,
J. Chem. Phys.
97
,
1983
(
1992
).
11.
R.
Strey
and
Y.
Viisanen
,
J. Chem. Phys.
99
,
4693
(
1993
).
12.
G.
Wilemski
,
J. Chem. Phys.
80
,
1370
(
1984
).
13.
K.
Nishioka
and
I.
Kusaka
,
J. Chem. Phys.
96
,
5370
(
1992
).
14.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
15.
D. W.
Oxtoby
and
D.
Kashchiev
,
J. Chem. Phys.
100
,
7665
(
1994
).
16.
A.
Laaksonen
,
R.
McGraw
, and
H.
Vehkamäki
,
J. Chem. Phys.
111
,
2019
(
1999
).
17.
Y. S.
Djikaev
,
A.
Tabazadeh
,
P.
Hamill
, and
H.
Reiss
,
J. Phys. Chem. A
106
,
10247
(
2002
).
18.
Y. S.
Djikaev
,
A.
Tabazadeh
, and
H.
Reiss
,
J. Chem. Phys.
118
,
6572
(
2003
).
19.
D. J.
Lee
,
M. M. Telo
da Gama
, and
K. E.
Gubbins
,
J. Chem. Phys.
85
,
490
(
1986
).
20.
A. I. Rusanov, Phasengleichgewichte und Grenzflachenerscheinungen (Academic, Berlin, 1978).
21.
P. G.
Debenedetti
and
H.
Reiss
,
J. Chem. Phys.
108
,
5498
(
1998
).
22.
R.
Bowles
,
D.
Reguera
,
Y.
Djikaev
,
H.
Reiss
,
J. Chem. Phys.
115
,
1853
(
2001
).
23.
R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption (John Wiley, New York, 1966).
24.
D.
Reguera
and
H.
Reiss
,
J. Chem. Phys.
119
,
1533
(
2003
).
25.
C.
Kemball
,
E. K.
Rideal
,
Proc. R. Soc. London, Ser. A
187
,
53
(
1997
).
26.
D.
Stauffer
,
J. Aerosol Sci.
7
,
319
(
1976
).
27.
F. M.
Kuni
and
A. A.
Melikhov
,
Theor. Math. Phys.
81
,
1182
(
1989
).
28.
F. M.
Kuni
,
A. A.
Melikhov
,
T. Yu.
Novozhilova
, and
I. A.
Terent’ev
,
Theor. Math. Phys.
83
,
530
(
1990
).
29.
J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).
30.
S. Ono and S. Kondo, in Encyclopedia of Physics, edited by S. Flugge (Springer, Berlin, 1960), Vol. 10, p. 134.
31.
D. J.
Donaldson
,
J. Phys. Chem. A
103
,
62
(
1999
);
D. J.
Donaldson
and
D.
Anderson
,
J. Phys. Chem. A
103
,
871
(
1999
).
32.
A. I.
Rusanov
,
F. M.
Kuni
, and
A. K.
Shchekin
,
Colloid J.
55
,
193
(
1993
);
F. M.
Kuni
,
F. M.
A. K.
Shchekin
, and
A. I.
Rusanov
,
Colloid J.
55
,
202
(
1993
);
F. M.
Kuni
,
F. M.
A. K.
Shchekin
, and
A. I.
Rusanov
,
Colloid J.
55
,
211
(
1993
).
33.
T. L.
Hill
,
J. Chem. Phys.
36
,
3182
(
1962
).
34.
D.
Kashchiev
,
J. Chem. Phys.
76
,
5098
(
1982
).
35.
CRC Handbook of Chemistry and Physics, 73rd ed., edited by D. R. Lide (CRC, Boca Raton, 1993).
36.
A.
Laaksonen
,
J. Colloid Interface Sci.
159
,
517
(
1993
).
37.
H.
Bianco
and
A.
Marmur
,
J. Colloid Interface Sci.
151
,
517
(
1992
).
38.
A.
Laaksonen
and
I.
Napari
,
J. Phys. Chem. B
105
,
11678
(
2001
).
39.
A.
Laaksonen
,
M.
Kulmala
, and
P. E.
Wagner
,
J. Chem. Phys.
99
,
6832
(
1993
).
40.
A.
Laaksonen
and
R.
McGraw
,
Europhys. Lett.
35
,
367
(
1996
).
This content is only available via PDF.