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ABSTRACT
High-accuracy prediction of the physical properties of amorphous materials is challenging in condensed-matter physics. A promising method
to achieve this is machine-learning potentials, which is an alternative to computationally demanding ab initio calculations. When applying
machine-learning potentials, the construction of descriptors to represent atomic configurations is crucial. These descriptors should be invari-
ant to symmetry operations. Handcrafted representations using a smooth overlap of atomic positions and graph neural networks (GNN) are
examples of methods used for constructing symmetry-invariant descriptors. In this study, we propose a novel descriptor based on a persistence
diagram (PD), a two-dimensional representation of persistent homology (PH). First, we demonstrated that the normalized two-dimensional
histogram obtained from PD could predict the average energy per atom of amorphous carbon at various densities, even when using a simple
model. Second, an analysis of the dimensional reduction results of the descriptor spaces revealed that PH can be used to construct descrip-
tors with characteristics similar to those of a latent space in a GNN. These results indicate that PH is a promising method for constructing
descriptors suitable for machine-learning potentials without hyperparameter tuning and deep-learning techniques.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159349

I. INTRODUCTION

High-accuracy prediction of the physical properties of disor-
dered systems such as amorphous materials is significantly chal-
lenging in condensed-matter physics. Ab initio calculations, based
on quantum mechanics, are versatile and highly accurate. How-
ever, the substantial computational cost limits the application of
these calculations to realistic amorphous structures. In recent years,
machine-learning potentials have emerged as an attractive method
to resolve the trade-off between computational cost and accuracy.

Machine-learning potential involves the construction of a sur-
rogate model of the relationship between atomic coordinates and

physical properties, which provides an alternative to computa-
tionally intensive ab initio calculations. Various machine-learning
models have been developed over the past decade, including Gaus-
sian process regression,1,2 artificial neural networks,3–6 and their
derivatives.7–12 A key requirement of machine-learning potential
models is the development of a suitable method for converting
atomic coordinates into vector data.

Predictions derived from machine-learning potentials should
adhere to physical laws. For example, the total energy of a system is
invariant to the spatial translation, rotation, reflection, and permu-
tation of chemically equivalent atoms. A direct approach to achieve
this is to ensure that the vectorial inputs of the machine-learning
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potential remain invariant under these symmetry operations. Cur-
rently, two methods exist for creating vectorial representations of
atomic coordinates, which are commonly known as descriptors. The
first method involves using handcrafted feature representations such
as the smooth overlap of atomic positions (SOAP)13 and atom-
centered symmetry functions.14 The second method uses graph neu-
ral networks (GNN),5,6,11,12 where essential structural characteristics
are extracted by neural networks during training. Using the former
descriptors, even a simple machine-learning model can adequately
perform predictions. However, the optimal values of numerous
hyperparameters in the descriptor, such as the cutoff, shape, and size
of the basis functions, should be determined. The latter method has
the advantage of not requiring descriptor hyperparameter tuning,
but it requires increased model complexity.

This study proposes a descriptor that differs from the afore-
mentioned approaches, which eliminates the need for hyperparam-
eter tuning while predicting the energies of amorphous materials
using a simple machine-learning model. In this study, we focus
on persistent homology (PH),15,16 a recently developed computa-
tional topology technique. PH effectively extracts topological and
geometrical characteristics and has been applied to structural analy-
ses in wide-ranging fields, from glass to bio-related materials.17–22 In
addition, recent studies have demonstrated that PH effectively iden-
tifies correlations between the physical and structural properties of
materials.23–29

Herein, we provide a brief overview of the fundamental con-
cepts of PH. In mathematics, a shape is considered a topological
space, X, consisting of a set of points (in our case, atoms) and a topol-
ogy. The topological characteristics of X are represented by holes
in space that are encoded in an algebraic structure called the k-th
homology group Hk(X). A nested sequence of topological space,
X1 ⊆ X2 ⊆ . . . Xn, results in the series Hk(X1), Hk(X2) ⋅ ⋅ ⋅Hk(Xn).
The concept of PH involves monitoring the elements of Hk(Xi) as
i increases, where i represents the scale and is often referred to as
“time.” The procedure used to obtain this sequence is called filtration
and is illustrated in Fig. 1.

During the filtration process for the first homology in a two-
dimensional system, circles with a radius r are placed at the respec-
tive atoms. Subsequently, r is increased gradually. Consequently,
the circles begin to intersect, and then, edges are set between the
centers of the intersecting circles. The growing network formed
by these edges defines the sequence of the topological space, Xi.
A closed path formed by these edges corresponds to a topologi-
cal feature called a cycle. As the radius continues to increase, the
closed path becomes completely covered by circles, which is inter-
preted as the conversion of the cycle into another type of topological
feature called a boundary. The features of PH are represented by
pairs of birth and death times at which cycles appear and are con-
verted into boundaries. Filtration can be generalized into three or
more dimensions using spheres or hyperspheres. A two-dimensional
visualization of birth–death time pairs is known as a persistence
diagram (PD).

Based on this definition, the PD captures information regarding
the bonding state and distribution of atoms and remains invariant
to the spatial translation, rotation, reflection, and permutations of
chemically equivalent atoms. Moreover, PD does not require any
hyperparameter to be adjusted manually.

In this study, we demonstrate that PH can be used as an input
for the machine-learning potential of amorphous structures. The
specific target is amorphous carbon (aC). Initially, we demonstrate
that the normalized two-dimensional histogram derived from the
PD can predict the average energy per atom of aC at various den-
sities, even when using a Ridge model. Moreover, we demonstrate
that the prediction accuracy is improved by utilizing a convolutional
neural network (CNN) model. Subsequently, we compare the PH
descriptors, conventional handcrafted descriptors, and latent space
of the GNN-based architectures. SOAP descriptors are selected for
the conventional handcrafted descriptor, whereas SchNet is used for
the GNN-based architecture. We reveal the differences in how each
descriptor captures structural characteristics. The 2D maps obtained
from the dimensionality reduction of the PH descriptors resemble
those of the SchNet descriptors but differ from those of the SOAP
descriptors. Based on these results, we conclude that PH can con-
struct descriptors with characteristics similar to those of a latent
space in a GNN, without deep learning and hyperparameter tuning.

II. METHODS
A. Datasets

The aC dataset was generated by ab initio calculations using
the VASP software.30–33 We utilized the local-density approxima-
tion (LDA) exchange-correlation functional and PAW potential for
carbon. Melt-quench simulations were performed to generate amor-
phous and liquid-state structures. A simple cubic lattice with 216
carbon atoms was selected as the initial state. Simulations were con-
ducted at densities of 1.5, 1.7, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, and
3.5 g/cm3 to generate different structures. The NVT ensemble34,35

was used for all the melt-quench simulations, and density was
adjusted by varying the size of the simulation cell. A time step of
1 fs was used for the simulations. For all densities, only the Γ points
were sampled in k-space. To increase the structural diversity, six
independent simulations were performed.

During the melt-quench simulations, the temperature was
increased from 300 to 9000 K in 2 ps to melt the carbon. Equilib-
rium molecular dynamics (MD) was conducted at 9000 K for 3 ps
to form the liquid state, followed by a decrease in temperature to
5000 K in 2 ps and equilibration for 2 ps. Finally, the temperature
was decreased from 5000 to 300 K in 2 ps to generate the amorphous
structure. During this process, 30 snapshots were obtained from the
equilibrium MD trajectory at 9000 K, 100 from the cooling process
between 9000 and 5000 K, 25 from the equilibrium MD trajectory at
5000 K, and 100 from the cooling process between 5000 and 300 K,
yielding 16 830 data points. The coordination number analysis of
this dataset confirms that the carbon atom neighbor environments
are adequately diverse (Fig. S2).

Additionally, the data for diamond structures containing 216
atoms at densities of 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, and 3.5 g/cm3 were pre-
pared. Further data on the diamond structures were obtained from
the 80 snapshots of the 2 ps equilibrium MD trajectory at 300 K,
yielding 560 data points.

To validate the predictions for larger structures, we generated
the data for 512-atom systems using the same procedure as that for
the 216-atom systems. A single simulation was conducted for each
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FIG. 1. Schematic of the filtration procedure used to obtain PD from the data points. In this example, there are five points (a)–(e). The PH group obtained by filtration is
represented by two birth–death pairs, A and B, in the PD. Values of birth and death time are 0.96 and 1.02 for A and 1.05 and 1.30 for B, respectively. Pair A (B) corresponds
to the birth and death of the cycle defined by the closed path a-b-c-a (c-b-d-e-c). The gray-shaded polygon in the growing sequence of the topological space indicates that
the closed path formed by the edges of the polygon is completely covered by circles during the filtration process.

density. The number of data points was 2805 for the amorphous and
liquid states. These datasets can be downloaded from Zenodo (DOI:
https://doi.org/10.5281/zenodo.7905585).

B. Persistent homology
In this study, we utilized the HomCloud code36,37 to analyze the

PH of the amorphous models. Herein, we focused on the ring struc-
tures that correspond to the cycles from one-dimensional homology.
The birth and death times of the respective cycles were determined
by alpha complex filtration. The basic procedure of alpha complex
filtration is the same as that depicted in Fig. 1, although the area cov-
ered by each sphere is restricted within the Voronoi cell. The radii
of the spheres were continuously and uniformly increased from zero
until the filtration was completed (i.e., all cycles were converted to
boundaries). In accordance with the convention, we denote the birth
and death times using the squared values of the radii of the spheres
employed during the filtration process. Consequently, the results of
these measurements are given in the units of Å2.

To create the input for the machine-learning potential, we
converted the PDs into two-dimensional histograms using a 128
× 128 mesh. The square region of [0.0, 8.0] birth × [0.0, 8.0] death
in the histogram was targeted. Unlike the previously proposed
methods,38,39 our method does not either apply a small weight to or
remove the birth–death time pairs close to the diagonal line in PD.
This is because we expect that the importance of each birth–death

time pair will be automatically recognized during the machine learn-
ing process. Because the PD represents the number and size of ring
structures, the histogram values depend on the system size. Conse-
quently, the histogram was transformed into a probability distribu-
tion, and z-score was standardized to ensure that the descriptors
were independent of model size. Because of the small size of the
model, periodic boundary conditions (PBC) were applied when cal-
culating the PDs. We discuss the limitations originating from the use
of PBC in Sec. 3 of the supplementary material.

By tracing the filtration procedure, we can identify the can-
didates of the cycle corresponding to each birth–death pair. This
enabled inverse analysis of PH, which was used to determine the
atomic arrangements corresponding to the low- and high-energy
regions. In some cases, several candidates exhibit equivalent topo-
logical characteristics. Various approaches40,41 exist for selecting a
representative cycle for these cases. In this study, the stable vol-
ume method41 was selected, which provides the tightest cycles with
robustness against noise.

C. SOAP descriptors
The SOAP descriptors were calculated using DScribe.42 The

hyperparameters for the SOAP descriptor include the cutoff radius
(rcut), number of radial basis functions (nmax), maximum degree
of spherical harmonics (lmax), and standard deviation of the Gaus-
sian function used to expand the atomic density (sigma). Optuna43
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was used to search for the optimal hyperparameter values, which
were determined to be rcut = 4.1, nmax = 8, lmax = 9, and sigma
= 0.16 (see Fig. S1 in the supplementary material). These hyper-
parameters resulted in a SOAP descriptor dimension of 360. The
average value across the axis representing the number of atoms was
used to evaluate the descriptor space.

D. SchNet
SchNet5 was selected as a representative model of the neu-

ral network potential based on GNN. SchNetPack44 was used to
implement the SchNet architecture. SchNet comprises four primary
components, as illustrated in Fig. 2 of Ref. 5: Atom embedding,
atom-wise layers, interaction blocks, and continuous-filter convo-
lution with filter-generating networks. In SchNet, a set of feature
vectors X0 = (x0

1, x0
2, . . . , x0

n) for the respective atoms was generated
using an atom-embedding layer based on the chemical species of

the atoms. Here, n denotes the number of atoms. Embeddings were
initialized randomly. The feature vector X0 was updated by passing
through each component layer. The feature vectors at the lth layer
are denoted by Xl = (xl

1, xl
2, . . . , xl

n). In addition to these feature vec-
tors, a vector representing the local environment of each atom was
constructed within the interaction blocks using filter generation net-
works based on the distance between the central atom i and the
neighboring atom j. The kth element of the vector is defined as

ek(ri − r j) = exp (−γ(∥ri − r j∥ − μk)2), (1)

where μk represents the center of the Gaussian function. In this
study, γ was set to 0.1 Å−2 and μk to 60 different values at equal inter-
vals in the range of 0–5 Å, yielding a 60-dimensional vector. Subse-
quently, this vector was passed to a fully connected neural network

FIG. 2. Structures, PDs, and results of stable volume analysis for liquid and amorphous carbon with a density of 2.2 g/cm3. (a) and (d) show the structural models of the liquid
and amorphous phases, respectively. (b) and (e) present the PDs derived from the liquid and amorphous structures, respectively. The colors and styles of the symbols in
these figures signify the number of vertices in the cycles corresponding to each point. The insets in these figures depict typical ring structures of five-, six-, and seven-vertex
cycles, as well as the cycle with the largest birth time in the amorphous structure. The pairs of numbers under five-, six-, and seven-vertex cycles represent the birth and death
times of each cycle. (c) and (f) display the results of the calculation of the radial distribution function restricted to the five- and six-vertex cycles in the liquid and amorphous
structures, respectively.
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FIG. 3. Calculation results and predictions by the machine-learning model based on PH descriptors: Training and test results of the mean energies per atom in aC. The red
dots represent the comparison results for the test data, while the blue dots represent those for the training data. Results from the (a) Ridge regression and (b) CNN models
are shown, along with (c) and (d) their predictions of the mean energies per atom for larger aC systems, respectively.

to produce an output vector, W l(ri − rj). The interaction of atoms
incorporated by a continuous-filter convolution is defined as

xl+1
i = ∑

j∈N(i)
xl

j ○W l(ri − r j), (2)

where N(i) represents the set of neighbors of atoms i.
By updating the learnable weight parameters in the architecture

with a combination of the four components during the training pro-
cedure, the network generated descriptors that capture the structural
characteristics to determine the total energy. In this study, the out-
put from the last interaction block of the trained SchNet model was
considered the descriptor generated by SchNet. Because the descrip-
tors were computed for each atom, the resulting descriptors formed
an n ×D matrix, where D represents the descriptor dimension that
was set to 100. To evaluate the descriptor space, the average value of

the D-dimensional vector along the axis of the number of atoms was
used.

E. Ridge regression
Ridge regression for the total energies, based on the PD-

generated descriptors, was conducted using the Scikit-learn pack-
age.45 An intercept term was included in all the regression models.
Because all the input values were non-negative, the regression coeffi-
cient was directly interpreted. The regularization parameter was set
to 200.0.

F. CNN model
The CNN model was implemented using PyTorch.46 The

model comprises three convolution layers followed by max-pooling
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FIG. 4. Calculation results and predictions by the machine-learning model based on the SOAP descriptor and SchNet. Training and test results of the mean energies per
atom in aC with red (blue) dots representing the comparison results for the test (training) data. Results obtained by (a) the NN based on SOAP descriptors and (b) the SchNet
model.

layers and two fully connected layers. The ReLU function was used
as the activation function in the model. The channel size of the first
two convolution layers was 64, whereas that of the last layer was 32.
The filter size was 3 × 3 for all the convolution layers.

During the training process, the loss function was evaluated
based on the mean squared error between the predicted and actual
mean energy per atom. The weights and biases in the convolution
and fully connected layers were optimized using stochastic gradi-
ent descent (SGD) with a Nesterov momentum of 0.9 and a weight
decay of 0.001. The milestones were set at 200, 400, 800, and 1200,
and the number of epochs was set to 1600. When the epoch reached
the milestones, the learning rate was reduced by a factor of 0.5. The
initial value of the learning rate was set to 0.0015.

G. Neural network potential based on SOAP
descriptors

Neural network potentials based on SOAP descriptors were
implemented using PyTorch. The model consists of two fully con-
nected hidden layers with 40 nodes in each layer. During the training
process, the loss function was evaluated based on the mean squared
error between the predicted and actual mean energy per atom. The
weights and biases in the model were optimized using the Adam
optimizer. The milestones were set at 200, 500, and 1000, and the
number of epochs was set to 2000. When the epoch reached the mile-
stones, the learning rate was reduced by a factor of 0.5. The initial
value of the learning rate was set to 0.001.

III. RESULTS AND DISCUSSION
First, we present the typical PDs for liquid and amorphous

carbon. Figures 2(a) and 2(d) show samples of liquid and amor-
phous structures with a density of 2.2 g/cm3. The PDs derived from

these structures are presented in Figs. 2(b) and 2(e). The colors and
symbols in these PDs signify the number of vertices of the cycle
corresponding to each point, which is determined by stable volume
analysis.

The three-vertex cycle with a long birth–death time that is
observed only in the amorphous state originates from the pore struc-
ture present under low- and medium-density conditions. The local
structure corresponding to this cycle is depicted in the inset of
Fig. 2(e).

A remarkable difference between the liquid and amorphous
states emerges in the birth–death time distributions for cycles with
more than five vertices. We present the typical local structure of the
five-, six-, and seven-vertex cycles in both liquid and amorphous
states in the insets of Figs. 2(b) and 2(e), along with their birth–death
times. Compared with the cycles in the amorphous state, those in the
liquid state exhibit structures with greater distortion.

In the PD of amorphous structures, these cycles form a verti-
cal line in the birth time range of 0.5–0.7. Such a structure is not
observed in the case of liquid. This corresponds to the fact that
medium-range order (MRO) exists in amorphous structures but not
in the liquid state. This correspondence can be clearly observed in
the radial distribution function using ring structures corresponding
to five-vertex and six-vertex cycles [Figs. 2(c) and 2(f)].

Although similar differences in the PDs between amorphous
and liquid structures also appear in the cases of lower and higher
densities, it was found that the area of birth–death times distribu-
tion varies with the density (Figs. S5 and S6). These analysis results
demonstrate that it is possible to detect the presence or absence of
MRO and pore structures from the PD.

Next, we demonstrated that the mean energy per atom in
amorphous/liquid carbon can be predicted using PDs. As described
in Sec. II, we constructed descriptors based on PH by converting
the PDs into two-dimensional histograms. These PH descriptors
were used as inputs for the Ridge regression and CNN models.
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FIG. 5. Dimensionality reduction results obtained by t-SNE for the SOAP, PH, and SchNet descriptors. The perplexity in the t-SNE model is 30.0. In panels (a)–(c), the color
of the data points corresponds to the density values, whereas in panels (d)–(f), it corresponds to the energy values.

Figures 3(a) and 3(b) show the training and test results of the respec-
tive models for the 216-atom aC system. In this study, 80% of the
data were used as training data, and the remaining 20% were used
as test data. Even using a simple Ridge regression model, the mean
energy per atom in both amorphous and liquid carbon was predicted
by the PH descriptors. The root mean squared error (RMSE) for the
test data was 59.2 meV/atom. The prediction accuracy improved by
utilizing the CNN model, and the RMSE for the test data decreased
to 40.7 meV/atom.

As shown in Fig. S7, both ridge regression and CNN predic-
tions were valid when the diamond structures were included in the
dataset. This result highlights that the PH descriptors effectively cap-
ture the correlation between the atomic structures and the energies
of various structures.

Machine-learning potentials should maintain their prediction
accuracy when applied to a system larger than that of the training

data. Therefore, we predicted the mean energy per atom in aC for
a system with 512 atoms. As shown in Figs. 3(c) and 3(d), both the
Ridge regression and CNN models accurately predicted the energies
based on the PH descriptor.

Subsequently, we compared these results with those obtained
using other methods. SOAP and SchNet were used as examples of a
conventional handcrafted representation and GNN model, respec-
tively. Figure 4 shows the results of the training and test for the
216-atom aC system using these methods. Among the investigated
models, the combination of the SOAP descriptor and neural network
exhibited the highest accuracy, and the RMSE for the test data was
16.4 meV/atom. The prediction accuracy is sensitive to the selection
of hyperparameters. As shown in Fig. S8, different hyperparameters
can reduce prediction accuracy. For the SchNet model, the RMSE
for the test data was 30.5 meV/atom, which falls between those
obtained from the SOAP+NN and PH descriptor+CNN models.
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FIG. 6. Dimensionality reduction results obtained by PCA for the SOAP, PH, and SchNet descriptors. In panels (a)–(c), the color of the data points corresponds to the density
values, whereas in panels (d)–(f), it corresponds to the energy values.

Note that all these prediction accuracies achieved by machine-
learning potentials are superior to those obtained from empirical
potentials (Fig. S9).

Beyond the comparison of the prediction accuracy, we investi-
gated how these descriptors capture the structural characteristics of
amorphous structures using dimensionality reduction. As described
in the Methods section, the average values of the descriptors for the
atoms were used to evaluate the descriptor space constructed using
SOAP and SchNet. We note that this procedure did not cause a sig-
nificant loss of information. As shown in Fig. S10, the mean energies
per atom were accurately predicted by the averaged descriptors using
a neural network. Figure 5 shows the t-SNE analysis results. The col-
ors in Figs. 5(a)–5(c) correspond to the density of aC, whereas those
in Figs. 5(d)–5(f) correspond to the energy of aC. In the t-SNE 2D
maps of the SOAP descriptor space, descriptors were grouped into
discrete island-like structures based on their densities [Fig. 5(a)].

Similarly, the t-SNE 2D maps for SchNet exhibited island-like
structures; however, the distribution of each island was broader than

that in the case of SOAP, and several islands partially overlapped
[Figs. 5(b) and 5(e)]. The 2D visualizations of the PH descriptor
space exhibited the most continuous distributions with respect to
both energy and density, as shown in Figs. 5(c) and 5(f). These
characteristics of the 2D visualizations were valid when different
hyperparameters values were used in the t-SNE analysis (Figs. S11
and S12). Moreover, principal component analysis (PCA) exhibited
similar results. As shown in Fig. 6, the 2D visualization of the SOAP
descriptor using PCA revealed a discrete distribution, whereas those
of the PH and SchNet descriptor spaces were continuous.

Notably, the above-mentioned differences between the SOAP
and PH/SchNet descriptors were independent of the hyperparam-
eters used in the SOAP descriptors. As shown in Fig. S13, the
dimensionality reduction of the SOAP descriptor used in Fig. S8
had a discrete distribution similar to those shown in Figs. 5 and 6.
This indicates that the continuous distribution originated from the
additional information captured by the PH and SchNet descriptors
but not by the SOAP descriptor. One promising candidate for this
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FIG. 7. Inverse analysis results based on the PH descriptor: (a) Projection of the Ridge coefficient onto the mesh grid used to generate the 2D histogram of the PD. (b)
Visualization of the high- and low-energy regions in a 512-atom aC sample determined by inverse analysis. (c) and (d) Distribution of the birth-death times for the cycles
assigned to high-energy region and low energy region in the structures obtained from MD trajectory at 5000 K with a mass density of 2.4 g/cm3, respectively. The insets in
these figures depict examples of ring structures. The colors and styles of the symbols in the figures signify the number of vertices of the cycles that correspond to each point.
The pair of numbers under the cycles represents the birth and death time of each cycle. (e) and (f) Histograms of the bond lengths and angles in the high- and low-energy
regions determined by inverse analysis. Data from 25 samples are aggregated and visualized as histograms.
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type of information is the topological structure, which is intrinsically
incorporated into PH and GNN.

Based on these results, we concluded that the extraction of
structural characteristics by PH is similar to that by GNN, but dif-
ferent from that by SOAP. Thus, PH can construct a descriptor
similar to that of a GNN without deep learning and hyperparameter
tuning.

These characteristics of the PH descriptor can be used to
reduce the complexity of machine-learning models for predict-
ing the energy of amorphous materials. Another advantage of this
descriptor is its prediction interpretability. In the case of Ridge
regression, we can estimate the contribution of each birth–death
pair from the value of the Ridge coefficient. Figure 7(a) shows the
projection of the Ridge coefficient onto the mesh grid used to gen-
erate the 2D histogram of the PD. The birth–death pairs in the dark
blue region (the large-negative-coefficient region) correspond to the
local structures that reduce the energy. By contrast, those in the dark
red region (the large-positive-coefficient region) correspond to the
local structures that increase the energy. In this study, we define the
birth–death pairs in the region where the Ridge coefficient is larger
(lower) than 0.003 (−0.0045) as the local structures with high (low)
energy.

We then determined the local structures that correspond to
the high- and low-energy regions obtained by inverse analysis
based on stable volumes. Figure 7(b) shows a visualization of
the high- and low-energy regions in the structure obtained from
the equilibrium MD trajectory at 5000 K with a mass density
of 2.4 g/cm3.

The same analysis was conducted on the remaining 24 samples
obtained from the same trajectory. Figures 7(c) and 7(d) show the
distributions of the birth–death times of the cycles assigned to the
high- and low-energy regions. Examples of the ring structures are
shown in the insets.

The distribution of the birth–death pairs for the low-energy
region overlaps with the vertical line structure in Fig. 2(e), which
characterizes the evolution of the MRO in the amorphous phase.
By contrast, the distribution of the birth–death pairs for the high-
energy region overlaps with that obtained from the liquid state,
characterized by more distorted ring structures.

We also analyzed the histograms of the bond lengths and angles
in the low- and high-energy regions, as shown in Figs. 7(e) and 7(f).
The histograms clearly show differences between the local struc-
tures assigned to the low- and high-energy regions. In the bond
length histogram, the low-energy structures exhibited a sharp peak
at ∼1.5 Å, whereas the peak for the high-energy structures was
significantly broader. The histograms of the bond angles for the
low- and high-energy structures differ in the range between 50○

and 80○. These differences in the histograms indicate that high-
energy structures exhibit greater randomness in terms of bonds and
angles.

These analyses indicate that the regression model for energy
prediction based on PDs focuses on the following two local struc-
tures as descriptors of the low- and high-energy regions: (1) large
ring structures with low variation in bond length and angles,
corresponding to the evolution of MRO, and (2) ring structures
with greater randomness. These results verify the ability of PH to

effectively extract the correlation between geometric and topological
structures and their energies.

IV. CONCLUSION
In this study, we demonstrated that the descriptors obtained

from PH can predict the mean energy per atom in aC using a simple
ridge regression model. The prediction accuracy was improved by
utilizing a CNN model. Furthermore, we compared the results with
those obtained using other methods. As examples of a conventional
handcrafted representation and a GNN model, we used SOAP and
SchNet, respectively. We demonstrated that the PH descriptor and
latent space in the trained SchNet model exhibited similar charac-
teristics. We visualized this point using the dimensionality reduction
of the descriptor spaces obtained from PH, SOAP, and SchNet. The
t-SNE 2D maps of the SOAP and SchNet descriptor spaces exhib-
ited island-like structures. However, the distribution of each island
for SchNet was significantly broader than that for SOAP, and sev-
eral islands partially overlapped. The 2D visualizations of the PH
descriptor space exhibited continuous distributions. A similar result
was observed for the 2D maps obtained by PCA. The difference
between the SOAP and PH/SchNet descriptor spaces originates from
the information on the topological structure, which is intrinsically
incorporated into PH and GNN.

Another advantage of the PH descriptor is the interpretability
of prediction. Local structures corresponding to the high- and low-
energy regions can be determined by utilizing the inverse analysis
technique for PH.

In summary, the PH descriptor provides several advantages
including a simple model architecture for predicting energy, the
absence of hyperparameter tuning in descriptor construction, and
the interpretability of prediction. However, several of these aspects
require further investigation. First, a method to improve predic-
tion accuracy is required because the accuracy of prediction by
PH is not superior to that of the other methods. One possible
reason for this is that PH may lack detailed geometrical informa-
tion. The complementary use of PH and conventional descriptors
may be a promising approach. Second, to apply this approach to
large-scale molecular dynamics simulations, an extension to the
prediction of the forces acting on the atoms is necessary. This
would necessitate the development of PH-based techniques for
extracting local topological characteristics of atom environments
and the utilization of the PD derivatives with respect to atomic
coordinates.

Another aspect is the construction of PH descriptors for mul-
tielement systems. In the case of monoelement systems, such as the
amorphous carbon studied here, we can obtain descriptors suitable
for energy prediction by applying a filtration process in which the
radii of all spheres are uniformly increased. However, when the sys-
tem includes different elements, special measures are required to
extract structural features that reflect the variations in the interac-
tions between atoms of the same and different species. This problem
may be solved simply by varying the initial radii of the spheres used
in filtration according to the atomic species. For our proposed CNN-
based model, it is also possible to combine the PD data for the partial

J. Chem. Phys. 159, 084101 (2023); doi: 10.1063/5.0159349 159, 084101-10

© Author(s) 2023

 24 April 2024 01:48:58

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

atomic coordinates of each element, similar to the RGB channels
in the image data. The exploration of these possibilities is expected
to improve machine-learning potentials based on descriptors that
depict both topological and geometrical information.

SUPPLEMENTARY MATERIAL

1. Hyperparameter optimization for SOAP descriptor
2. Diversity of neighboring condition of carbon atoms in the

dataset
3. Limitations originating from the use of periodic boundary

conditions
4. Structures and PDs for liquid and amorphous carbon with low

and high densities
5. Prediction results by PH descriptor for the dataset including

crystal data
6. Prediction results by SOAP+NN model with hyperparameters

different from optimal values
7. Calculation results of the energies using empirical potentials
8. Results of prediction using average values of SOAP and

SchNet descriptors
9. Results of t-SNE with perplexity = 10.0

10. Results of t-SNE with perplexity = 50.0
11. Dimensional reduction analyses for SOAP descriptor space

with different hyperparameters
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