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The paper presents a rigorous derivation of the velocity autocorrelation function for an anoma-
lously diffusing slow solute particle in a bath of fast solvent molecules. The result is obtained
within the framework of the generalized Langevin equation and uses only scaling arguments
and identities which are based on asymptotic analysis. It agrees with the velocity autocorrela-
tion function of an anomalously diffusing Rayleigh particle whose dynamics is described by a
fractional Ornstein-Uhlenbeck process in velocity space. A simple semi-analytical example il-
lustrates under which conditions the latter model is appropriate. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891357]

The term “anomalous diffusion” has been coined long
time ago1, 2 to label geometrically unconstrained diffusion
processes which are not described by Fick’s model.3, 4 Cor-
respondingly, the mean square displacement (MSD) of the
diffusing particles does not grow linearly with time, as pre-
dicted by Einstein’s theory,5 but instead ∝ tα , where 0 < α

< 2 and α �= 1. The MSD of a tagged particle is an av-
erage over all possible realizations of the particle trajecto-
ries, W (t) = 〈(x(t) − x(0))2〉, and the diffusive regime refers,
strictly speaking, to its asymptotic form for long times,

W (t)
t→∞∼ 2Dαtα. (1)

The regimes 0 < α < 1 and 1 < α < 2 are usually re-
ferred to as sub- and superdiffusion, respectively. Here and
in the following the tagged particle is supposed to move in
an isotropic system and the coordinate x refers to an arbitrary
direction in a space-fixed Euclidean reference frame.

A possible route to modeling anomalous diffusion pro-
cesses is to describe the time evolution of the associated
transition probabilities by fractional Fokker-Planck equations
(FFPEs).6–10 These are generalizations of normal Fokker-
Planck equations (FPEs),11 where an additional fractional
time derivative enforces the MSD to have the experimentally
observed form (1). An interesting model from a theoretical
point of view is the anomalously diffusing Rayleigh particle,
which describes anomalous Brownian motion on the velocity
level. This model has been studied some years ago by Barkai
and Silbey8 and the corresponding FFPE reads

∂tp(v, t |v0, 0) = ηρ 0∂
1−ρ
t

{
∂

∂v
v + kBT

m

∂2

∂v2

}
p(v, t |v0, 0).

(2)
Here p(v, t |v0, 0) is the conditional probability density for a
velocity change v0 → v within time t and the symbol 0∂

1−ρ
t

denotes a fractional time derivative12 of order 1 − ρ. For an
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arbitrary function, f(t), the latter is defined as

0∂
1−ρ
t f (t) = d

dt

∫ t

0
dt ′

(t − t ′)ρ−1

�(ρ)
f (t ′), (3)

with �(.) being the generalized factorial13 and ρ > 0. The pa-
rameter ηρ is a fractional relaxation constant with physical di-
mension time−ρ and kBT/m is the mean square velocity of the
diffusing particle, where m is its mass, kB the Boltzmann con-
stant, and T the temperature. The FFPE (2) describes a frac-
tional Ornstein-Uhlenbeck process in velocity space and is to
be solved with the initial condition p(v, 0|v0, 0) = δ(v − v0).
For long times, the transition probability density tends to
the equilibrium (Maxwell) distribution, limt→∞ p(v, t |v0, 0)
≡ peq(v). The link between diffusion in velocity and posi-
tion space is established through the velocity autocorrelation
function (VACF), c(t) = 〈v(t)v(0)〉, which enables the cal-
culation of the MSD via14 W (t) = 2

∫ t

0 dt ′ (t − t ′)c(t ′). The
VACF corresponding to the dynamical model (2) is obtained
through c(t) = ∫ ∫

dvdv0 vv0p(v, t |v0, 0)peq(v), and the re-
sulting form is

c(t) = 〈v2〉Eρ(−ηρt
ρ). (4)

Here Eρ(z) = ∑∞
k=0 zk/�(1 + ρk) denotes the Mittag-Leffler

function of order ρ,15, 16 and 〈v2〉 = ∫
dv v2peq(v) = kBT /m.

Setting ρ = 2 − α, the resulting MSD has the asymptotic
form (1), where

Dα = 〈v2〉η−1
2−α

�(1 + α)
. (5)

In case of normal diffusion, where ρ = α = 1, Eq. (2) re-
duces to the FPE for a normal Rayleigh particle4 and (4) to
an exponentially decaying function. Alternatively, anomalous
diffusion may be described by generalizations of the Langevin
equation,17 where the friction constant is replaced by a mem-
ory kernel and the stochastic force is modified accordingly.
These generalizations may be motivated by essentially math-
ematical arguments18 or by particular physical models for
the bath in which the diffusing particle is immersed.19, 20 It
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is worthwhile mentioning that the underlying assumptions of
different models for subdiffusion maybe quite different. The
stochastic processes described by the generalized Langevin
equations presented in Refs. 18–20 are, for example,
Gaussian, whereas the FFPE (2) describes a non-gaussian pro-
cess. An overview of stochastic models for anomalous diffu-
sion can be found in Refs. 10 and 21.

Any stochastic model for a dynamical system encodes a
separation of time scales corresponding to “slow” and “fast”
dynamical variables, where the latter are modeled as noise.
This is true for normal and anomalous diffusion. Computer
simulation experiments on a simple liquid22 have shown that
the exponentially decaying VACF of a normally diffusing
Rayleigh particle emerges if the mass of a tagged “solute” is
systematically increased, slowing its motions down with re-
spect to those of the solvent molecules. A formal proof for
this observation has been given a posteriori23 in the frame-
work of the generalized Langevin equation (GLE) introduced
by Zwanzig,14, 24–26 turning the mass scaling into an ampli-
tude scaling of the memory function. The aim of the present
paper is to extend the scope of the latter work and to derive
the VACF of an anomalously diffusing heavy particle in a bath
of light solvent molecules from “first principles.” The starting
point is again the GLE

v̇(t) +
∫ t

0
dτ κ(t − τ )v(τ ) = f +(t), (6)

which is an exact, deterministic equation of motion for a
tagged particle in an interacting many-body system. It is not to
be confused with the generalizations of the Langevin equation
mentioned earlier (see, e.g., Refs. 18–20), which are stochas-
tic equations of motion implying a model for the solvent. In
the GLE (6), the memory kernel, κ , and the projected accel-
eration, f+, fully represent the effect of the environment on
the dynamics of the tagged particle. Assuming that the time
evolution of the total system is described by Hamiltonian dy-
namics, the projected acceleration has the form

f +(t) = exp((1 − P)Lt)(1 − P)Lv, (7)

where L is the Liouville operator and P is a projector whose
action on an arbitrary phase function f is defined through
Pf = (〈vf 〉/〈v2〉)v. In this context, the brackets 〈. . . 〉 repre-
sent an ensemble average over the phase space variables. With
the above definitions, the memory kernel can be expressed as
autocorrelation function of f+,

κ(t) = 〈f +(0)f +(t)〉
〈v2〉 . (8)

Since 〈v(0)f +(t)〉 = 0 by construction, it follows from (6)
that the time evolution of the VACF is described by the in-
tegral equation

ċ(t) +
∫ t

0
dτ κ(t − τ )c(τ ) = 0. (9)

The memory kernel is to be considered as a purely formal
quantity, since its calculation is in practice as impossible as
the explicit solution of the equations of motions for the solute
and the solvent molecules. For the following considerations
its exact form is, however, not needed and it only matters that

the VACF verifies an equation of motion of the form (9). The
normalized solution,

ψ(t) = c(t)/c(0), (10)

of this integro-differential equation can be expressed by the
contour integral

ψ(t) = 1

2πi

∮
ds

exp(st)

s + κ̂(s)
, (11)

where κ̂(s) = ∫ ∞
0 dt exp(−st)κ(t) (R{s} > 0) denotes the

Laplace-transformed memory function. Expression (11) is
simply the inverse Laplace transform of the solution of (9)
in Laplace space, setting c(0) = 1.

We consider now the situation that the memory function
is scaled according to

κ(t) → λκ(t), (12)

where λ → 0 and λ > 0. Under the assumptions to be dis-
cussed in the following, the above scaling corresponds to
changing the mass of the tagged particle as

m → m/λ. (13)

In case that t = 0, the equivalence of (12) and (13) is
strictly valid if one assumes that the Hamiltonian of the
full system has the standard form H = ∑n

i=1 p2
i /(2mi)

+ V (x1, . . . , xn), where n is the total number of degrees
of freedom of the system, xi are the particle coordi-
nates, and pi the associated momenta. This is seen by
using that the Liouville operator has the general form,
L = ∑n

i=1{(∂H/∂pi)∂/∂xi − (∂H/∂xi)∂/∂pi}, such that
Lv = −(1/m)∂V/∂x. Since 〈v2〉 = kBT /m, it follows then
from relations (7) and (8) that κ(0)∝1/m. Defining k to be the
index of the tagged particle, the Hamiltonian takes the form
H = λ p2

k/(2mk) + ∑
i �=k p2

i /(2mi) + V (x1, . . . , xn), which
shows that the dynamics of the tagged particle is frozen out
in the limit λ → 0. If one can assume that the dynamics of
the remaining particles is not affected by this process, as far
as the calculation of ensemble averages is concerned, relation
(13) is also true for t > 0.

Since the Laplace transform is a linear integral transform,
the VACF corresponding to the scaled memory kernel (12) is
given by

ψλ(t) = 1

2πi

∮
ds

exp(st)

s + λκ̂(s)

= 1

2πi

∮
ds

exp(sλt)

s + κ̂(λs)
, (14)

where the variable change s → s/λ has been performed to go
from the first to the second line. In the limit λ → 0 one thus
needs only the asymptotic form of κ̂(s) for small arguments
s. Using a theorem from asymptotic analysis,27 it has been
shown in Ref. 28 that this form is entirely determined by the
MSD for large times. If the latter has the form (1) the Laplace
transformed memory function behaves as

κ̂(s)
s→0∼

〈
v2

〉
Dα�(α + 1)

sα−1. (15)

 25 April 2024 09:16:17



041105-3 Gerald R. Kneller J. Chem. Phys. 141, 041105 (2014)

Introducing here the characteristic time scale

τ =
(

Dα�(α + 1)

〈v2〉
)1/(2−α)

, (16)

the dimensionless Laplace variable u = sτ , and the dimen-
sionless asymptotic memory function

K(u) = uα−1, (17)

the normalized VACF takes a form which shows that τ sets
the time scale for the velocity of the tagged particle,

ψλ(t)
λ→0∼ 1

2πi

∮
du

exp(λu [t/τ ])

u + K(λu)
. (18)

Due of the power-law form of K(u), a scaling factor for its
argument may be turned into a scaling factor for its ampli-
tude, K(λu) = λα − 1K(u). A new variable change u → u/λα − 1

shifts the latter back into the argument of K(u) and repeating
this procedure n times leads to

ψλ(t)
λ→0∼ 1

2πi

∮
du

exp
(
λ λα−1 · · · λ(α−1)n−1

u[t/τ ]
)

u + K(λ(α−1)n−1
u)

.

Since |α − 1| < 1, the limit n → ∞ can be performed, yield-
ing limn→∞(α − 1)n − 1 = 0 for the exponent of λ in the ar-
gument of K(.) and

∑∞
k=0(α − 1)k = 1/(2 − α) for the series

of the exponents of λ in the argument of the exponential func-
tion. The resulting VACF has then the form

ψλ(t)
λ→0∼ 1

2πi

∮
du

exp(λ1/(2−α)u[t/τ ])

u + K(u)
. (19)

At this point one can use that

Eρ(−tρ) = 1

2πi

∮
du

exp(ut)

u(1 + u−ρ)
(20)

is the contour integral representation of the “stretched”
Mittag-Leffler (ML) function,15, 16 and combining relations
(19) and (20) thus leads to

ψλ(t)
λ→0∼ E2−α(−λ[t/τ ]2−α). (21)

Obviously, the limit λ → 0 in (21) cannot be strictly per-
formed for finite time arguments and should be interpreted
as λ � 1, where t � τ must be fulfilled to obtain appre-
ciable variations of the VACF. In a simple liquid, where all
molecules are identical, τ is same for all molecules. Applying
now the scaling procedure described above for one of them
turns the selected “solute” molecule into a heavy, anoma-
lously diffusing Rayleigh particle, which moves on much
longer time scales than the remaining “solvent” molecules.
According to relation (21), this time scale is given by

τλ = τ

λ1/(2−α)
� τ, (22)

such that

ψλ(t) ≈ E2−α

( − [t/τλ]2−α
)
. (23)

Setting here ηρ = τ
−ρ
λ and ρ = 2 − α, the normalized version

of the VACF given in (4) is retrieved.
The scaling procedure described above and the resulting

time scale separation can be illustrated with a simple model

1 2

1

3 2

2 4 6 8 10
t m

0.2

0.4

0.6

0.8

1.0

t 0

FIG. 1. Model memory function (24) for different values of α. Reprinted
with permission from J. Chem. Phys. 134, 224106 (2011). Copyright 2011
AIP Publishing LLC.

system, where the memory function has the form28

κ(t) = 2M(α, 1,−t/τm). (24)

Here, M(a, b, z) is Kummer’s hypergeometric function,13 

has the dimension of a frequency, and τm is the characteristic
time scale of the memory function. Fig. 1 shows the function
for α = 1/2, 1, 3/2. The Laplace transformed memory func-
tion,

κ̂(s) = 2

{
τα
m

s1−α

1

(sτm + 1)α

}
, (25)

has the requested form (15) for small s, where

Dα = τ−α
m 〈v2〉

2�(α + 1)
, (26)

and the characteristic velocity time scale is

τ =
(

τ−α
m

2

) 1
2−α

. (27)

The normalized VACF corresponding to the scaled memory
function is computed by evaluating the contour integral (14).
An analytical solution exists, however, only for α = 1, where
κ(t) = 2exp (−t/τm). For α �= 1 one can follow Ref. 28 and
resort to a Padé-approximation for the Laplace-transformed
memory function,

κ̂(s) ≈
∑M

a

k=0 ak(s − s0)k∑M
b

k=0 bk(s − s0)k
, (28)

where {ak} and {bk} are constants. The VACF is then approxi-
mated by a multi-exponential function which can be evaluated
with computer algebra programs. The calculations presented
here have been performed with MATHEMATICA,29 setting Ma
= Mb = 10, and s0 = 0.05/τm. These values were chosen em-
pirically, in order to maintain the relative error of the memory
function below 5% for t/τm ∈ [0, 1000]. The amplitude for
the memory function was set to  = 1/τm, such that τ = τm.
Figure 2 shows the normalized VACFs (solid lines) for
α = 1/2, 1, 3/2 (from top to bottom), and in each row
the scaling parameter for the memory function is set to
λ = 1, 0.2, 0.02, respectively, from left to right. In each panel
the corresponding asymptotic VACF, which is defined by the
rhs of Eq. (23), is displayed for comparison (dashed lines).
The results show that the model for an anomalously diffusing
Rayleigh particle implies a separation of time scales, as its
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FIG. 2. Velocity autocorrelation functions ψ
λ
(t) for different scaling fac-

tors λ (solid lines) and corresponding asymptotic approximations (23)
(dashed lines). From top to bottom α = 1/2, 1, 3/2, from left to right λ =
1, 0.2, 0.02. The amplitude of the memory function (Eq. (24)) is chosen as
 = 1/τm, such that τ = τm.

counterpart for normal diffusion, and that the model leads to
a nearly perfect approximation of the “real” VACF if the time
scales τλ and τ are separated by about two orders of magni-
tude. Computer simulations of lipid bilayers, where the lipid
molecules exhibit anomalous lateral diffusion, have shown
that τ is of the order of picoseconds,30 which is extremely
short compared to the millisecond time scale on which these
motions are usually studied experimentally.31 In this situa-
tion the anomalously diffusing Rayleigh article is an excel-
lent model, but it should be kept in mind that it cannot be
valid on arbitrarily short time scales, where it becomes even
unphysical since the derivatives c(k)(0) all diverge, although
they represent physical quantities.14, 26

In this Communication, an exact model-free derivation of
the VACF for an anomalously diffusing particle has been pre-
sented for the case that the motions of the particle are much
more slower than those of the molecules in the surrounding
solvent. Here the asymptotic form of its MSD is supposed to
be known. The effect of the time scale separation on the VACF

has been illustrated for a simple model system. At present,
the prediction of anomalous diffusion on the basis of general
physical properties of a solute–solvent system is still a chal-
lenge.
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