Sulfur‐based molecules containing biotin and hydroxyl groups have been used to create a wide variety of self‐assembled monolayers on gold surfaces. Surface plasmon resonance has been used to study insitu the binding of streptavidin to these monolayers from solution. The self‐assembled monolayers allow a high degree of control over the surface properties. The choice of an appropriate biotin‐containing molecule, with a spacer segment, and the dilution of this molecule within the monolayer by hydroxythiols, allows optimization of the binding properties of the monolayer—nonspecific interactions between streptavidin and the surface are below detection limits, and specific binding between the streptavidin and biotin groups can be maximized.

1.
A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic, San Diego, 1991).
2.
G. S.
Ferguson
,
M. K.
Chaudury
,
G. B.
Sigal
, and
G. M.
Whitesides
,
Science
253
,
776
(
1991
).
3.
K. L.
Prime
and
G. M.
Whitesides
,
Science
252
,
1164
(
1991
).
4.
L.
Häussling
,
H.
Ringsdorf
,
F.-J.
Schmitt
, and
W.
Knoll
,
Langmuir
7
,
1837
(
1991
).
5.
F.-J.
Schmitt
,
L.
Häussling
,
H.
Ringsdorf
, and
W.
Knoll
,
Thin Solid Films
210/211
,
815
(
1992
).
6.
W. A.
Hendrickson
,
A.
Pähler
,
J. L.
Smith
,
Y.
Satow
,
E. A.
Merritt
, and
R. P.
Phizackerley
,
Proc. Natl. Acad. Sci. USA
86
,
2190
(
1989
).
7.
P. C.
Weber
,
D. H.
Ohlendorf
,
J. J.
Wendoloski
, and
F. R.
Salemme
,
Science
243
,
85
(
1989
).
8.
P. C.
Weber
,
J. J.
Wendoloski
,
M. W.
Pantoliano
, and
F. R.
Salemme
,
J. Am. Chem. Soc.
114
,
3197
(
1992
).
9.
C. A.
Helm
,
F.-J.
Schmitt
,
J. N.
Israelachvili
, and
W.
Knoll
,
Makromol. Chem. Macromol. Symp.
46
,
103
(
1991
).
10.
S. A.
Darst
,
M.
Ahlers
,
P. H.
Meller
,
E. W.
Kubalek
,
R.
Blankenburg
,
H. O.
Ribi
,
H.
Ringsdorf
, and
R. D.
Romberg
,
Biophys. J.
59
,
387
(
1991
).
11.
R.
Blankenburg
,
P.
Meller
,
H.
Ringsdorf
, and
C.
Salesse
,
Biochemistry
28
,
8214
(
1989
).
12.
M.
Ahlers
,
R.
Blankenburg
,
D. W.
Grainger
,
P.
Meller
,
H.
Ringsdorf
, and
C.
Salesse
,
Thin Solid Films
180
,
93
(
1989
).
13.
D.
Vaknin
,
J.
Als-Nielsen
,
M.
Piepenstock
, and
M.
Lösche
,
Biophys. J.
60
,
1545
(
1991
).
14.
M.
Lösche
,
M.
Piepenstock
,
D.
Vaknin
, and
J.
Als-Nielsen
,
Thin Solid Films
210/211
,
659
(
1992
).
15.
F.-J.
Schmitt
,
A. L.
Weisenhorn
,
P. K.
Hansma
, and
W.
Knoll
,
Makromol. Chem., Macromol. Symp.
46
,
133
(
1991
).
16.
F.-J.
Schmitt
and
W.
Knoll
,
Biophys. J.
60
,
716
(
1991
).
17.
F.-J.
Schmitt
,
A. L.
Weisenhorn
,
P. K.
Hansma
, and
W.
Knoll
,
Thin Solid Films
210/211
,
666
(
1992
).
18.
C. D.
Bain
,
E. B.
Trbughton
,
Y. T.
Tao
,
J.
Evall
,
G. M.
Whitesides
, and
R. G.
Nuzzo
,
J. Am. Chem. Soc.
111
,
321
(
1989
).
19.
W. Knoll, F.-J. Schmitt, and Ch. Klein, German Patent Application DE 4039677, Boehringer Mannheim GmbH, BRD.
20.
W. Knoll, F.-J. Schmitt, and Ch. Klein, International Patent Application WO 92/10757, Boehringer Mannheim GmbH, BRD.
21.
E.
Kretschmann
,
Z. Phys.
241
,
313
(
1971
).
22.
C. D.
Bain
,
H. A.
Biebuyck
, and
G. M.
Whitesides
,
Langmuir
5
,
723
(
1989
).
23.
L.
Strong
and
G. M.
Whitesides
,
Langmuir
4
,
546
(
1988
).
24.
E. B.
Troughton
,
C. D.
Bain
,
G. M.
Whitesides
,
R. G.
Nuzzo
,
D. L.
Allara
, and
M. D.
Porter
,
Langmuir
4
,
365
(
1988
).
25.
J. N.
Herron
,
W.
Müller
,
M.
Paudler
,
H.
Riegler
,
H.
Ringsdorf
, and
P. A.
Suci
,
Langmuir
8
,
1413
(
1992
).
26.
R. Reiter, H. Motschmann, and W. Knoll, Langmuir (in press).
27.
A.
Schmidt
,
J.
Spinke
,
T.
Bayerl
,
E.
Sackmann
, and
W.
Knoll
,
Biophys. J.
63
,
1385
(
1992
).
28.
J. D.
Andrade
and
V.
Hlady
,
Adv. Polymer Sci.
79
,
2
(
1986
).
29.
J.
Schneir
,
R.
Sonnenfeld
,
O.
Marti
,
P. K.
Hansma
,
J. E.
Demuth
, and
R. J.
Hamers
,
J. Appl. Phys.
63
,
717
(
1988
).
30.
C. D.
Bain
,
J.
Evall
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
111
,
7155
(
1989
).
31.
C. D.
Bain
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
111
,
7164
(
1989
).
32.
R. Reiter, Ph.D. thesis, University of Mainz, 1992.
This content is only available via PDF.
You do not currently have access to this content.