The heat of formation of NCO has been determined rigorously by state‐of‐the‐art abinitio electronic structure methods, including Mo/ller–Plesset perturbation theory from second through fifth order (MP2–MP5) and coupled‐cluster and Brueckner methods incorporating various degrees of excitation [CCSD, CCSD(T), BD, BD(T), and BD(TQ)]. Five independent reactions were investigated to establish a consistent value for ΔHf,0(NCO): (a) HNCO(X̃ 1A′)→H(2S)+NCO(2Π), (b) HNCO(X̃ 1A′)→H++NCO, (c) N(4S)+CO→NCO(2Π), (d) HCN+O(3P)→H(2S)+NCO(2Π), and (e) NH(3Σ)+CO→H(2S)+NCO(2Π). The one‐particle basis sets employed in the study were comprised of as many as 377 contracted Gaussian functions and ranged in quality from [4s2p1d] to [14s9p6d4f] on the (C,N,O) atoms and from [2s1p] to [8s6p4d] on hydrogen. After the addition of bond additivity corrections evaluated from related reactions of precisely known thermochemistry, all five approaches were found to converge on the value ΔHf,0(NCO)=31.4(5) kcal mol−1. Appurtenant refinements were obtained for the heat of formation of isocyanic acid, ΔHf,0(HNCO)=−27.5(5) kcal mol−1, and hydrogen cyanide, ΔHf,0(HCN)=31.9(5) kcal mol−1. The final proposals for ΔHf,0(NCO) and ΔHf,0(HNCO) resolve outstanding discrepancies with experiment and provide updates for thermochemical cycles of relevance to combustion chemistry.  

1.
R. A.
Perry
,
J. Chem. Phys.
82
,
5485
(
1985
).
2.
J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, 20th Symposium (International) on Combustion, The Combustion Institute (1984), p. 673.
3.
B. S.
Haynes
,
Combust. Flame
28
,
113
(
1977
).
4.
W. R.
Anderson
,
J. A.
Vanderhoff
,
A. J.
Kotlar
,
M. A.
Dewilde
, and
R. A.
Beyer
,
J. Chem. Phys.
77
,
1677
(
1982
).
5.
R. A.
Perry
and
D. L.
Siebers
,
Nature (London)
324
,
657
(
1986
).
6.
J. A.
Miller
and
C. T.
Bowman
,
Int. J. Chem. Kin.
23
,
289
(
1991
).
7.
R. N.
Dixon
,
Philos. Trans. R. Soc. London, Ser. A
252
,
165
(
1960
).
8.
D. E.
Milligan
and
M. E.
Jacox
,
J. Chem. Phys.
47
,
5157
(
1967
).
9.
P. S. H.
Bolman
,
J. M.
Brown
,
A.
Carrington
,
I.
Kopp
, and
D. A.
Ramsay
,
Proc. R. Soc. London, Ser. A
343
,
17
(
1975
).
10.
R. A.
Copeland
and
D. R.
Crosley
,
Can. J. Phys.
62
,
1488
(
1984
).
11.
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
67
,
2868
(
1977
).
12.
T. R.
Charlton
,
T.
Okamura
, and
B. A.
Thrush
,
Chem. Phys. Lett.
89
,
98
(
1982
).
13.
D. R.
Woodward
,
D. A.
Fletcher
, and
J. M.
Brown
,
Mol. Phys.
62
,
517
(
1987
).
14.
P.
Misra
,
C. W.
Mathews
, and
D. A.
Ramsay
,
J. Mol. Spectrosc.
130
,
419
(
1988
).
15.
D.
Patel-Misra
,
D. G.
Sauder
, and
P. J.
Dagdigian
,
J. Chem. Phys.
93
,
5448
(
1990
).
16.
S.
Saito
and
T.
Amano
,
J. Mol. Spectrosc.
34
,
383
(
1970
).
17.
T.
Amano
and
E.
Hirota
,
J. Chem. Phys.
57
,
5608
(
1972
).
18.
K.
Kawaguchi
,
S.
Saito
, and
E.
Hirota
,
Mol. Phys.
49
,
663
(
1983
).
19.
K.
Kawaguchi
,
S.
Saito
, and
E.
Hirota
,
Mol. Phys.
55
,
341
(
1985
).
20.
A.
Carrington
,
A. R.
Fabris
, and
N. J. D.
Lucas
,
J. Chem. Phys.
49
,
5545
(
1968
).
21.
A.
Carrington
,
A. R.
Fabris
,
B. J.
Howard
, and
N. J. D.
Lucas
,
Mol. Phys.
20
,
961
(
1971
).
22.
C. E.
Barnes
,
J. M.
Brown
,
A. D.
Fackerell
, and
T. J.
Sears
,
J. Mol. Spectrosc.
92
,
485
(
1982
).
23.
J.
Werner
,
W.
Seebass
,
M.
Koch
,
R. F.
Curl
,
W.
Urban
, and
J. M.
Brown
,
Mol. Phys.
56
,
453
(
1985
).
24.
P. B.
Davies
and
I. H.
Davis
,
Mol. Phys.
69
,
175
(
1990
).
25.
H.
Okabe
,
J. Chem. Phys.
53
,
3507
(
1970
).
26.
JANAF Thermochemical Tables, 3rd ed.
J. Phys. Chem. Ref. Data
14
, Supp. No.
1
(
1985
).
27.
B. J.
Sullivan
,
G. P.
Smith
, and
D. R.
Crosley
,
Chem. Phys. Lett.
96
,
307
(
1983
).
28.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Phys. Chem.
90
,
6184
(
1986
).
29.
R. J.
Balla
and
K. H.
Casleton
,
J. Phys. Chem.
95
,
2344
(
1991
).
30.
D. G.
Sauder
,
D.
Patel-Misra
, and
P. J.
Dagdigian
,
J. Chem. Phys.
95
,
1696
(
1991
).
31.
L. F.
Phillips
,
I. A. W.
Smith
,
R. P.
Tuckett
, and
C. J.
Whitham
,
Chem. Phys. Lett.
183
,
254
(
1991
).
32.
K.-Y.
Du
and
D. W.
Setser
,
Chem. Phys. Lett.
153
,
393
(
1988
).
33.
S. Wategaonkar and D. W. Setser, J. Phys. Chem. (submitted for publication).
34.
X.
Liu
and
R. D.
Coombe
,
J. Phys. Chem.
91
,
7543
(
1989
).
35.
A. L. L.
East
,
C. S.
Johnson
, and
W. D.
Allen
,
J. Chem. Phys.
98
,
1299
(
1993
).
36.
D. R.
Cyr
,
R. E.
Continetti
,
R. B.
Metz
,
D. L.
Osborn
, and
D. M.
Neumark
,
J. Chem. Phys.
97
,
4937
(
1992
).
37.
S. J. Klippenstein, A. L. L. East, and W. D. Allen (manuscript in preparation).
38.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, Princeton, 1979).
39.
G.
Winnewisser
,
A. G.
Maki
, and
D. R.
Johnson
,
J. Mol. Spectrosc.
39
,
149
(
1971
).
40.
P. R.
Bunker
,
P.
Jensen
,
W. P.
Kraemer
, and
R.
Beardsworth
,
J. Chem. Phys.
85
,
3724
(
1986
).
41.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
Chem. Phys. Lett.
135
,
67
(
1987
).
42.
C. E. Moore, Atomic Energy Levels, Office of Standard Reference Data, National Bureau of Standards (U.S. GPO, Washington, D.C., 1971), Vol. 1.
43.
S. E.
Bradforth
,
E. H.
Kim
,
D. W.
Arnold
, and
D. M.
Neumark
,
J. Chem. Phys.
98
,
800
(
1993
).
44.
I.-C.
Chen
,
W. H.
Green
, Jr.
, and
C. B.
Moore
,
J. Chem. Phys.
89
,
314
(
1988
).
45.
W. D.
Allen
and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
329
(
1988
).
46.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
47.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
48.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
55
,
716
(
1971
).
49.
W. D.
Allen
and
H. F.
Schaefer
III
,
Chem. Phys.
108
,
243
(
1986
).
50.
F. B. van Duijneveldt, IBM Research Report No. RJ 945 (1971).
51.
M. W.
Wong
,
P. M. W.
Gill
,
R. H.
Nobes
, and
L.
Radom
,
J. Phys. Chem.
92
,
4875
(
1988
).
52.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
53.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
54.
R.
Ahlrichs
and
P. R.
Taylor
,
J. Chim. Phys.
78
,
315
(
1981
).
55.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
56.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
57.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley-Interscience, New York, 1986).
58.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).
59.
C.
Mo/ller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
60.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem. Symp.
10
,
1
(
1976
).
61.
R.
Krishnan
and
J. A.
Pople
,
Int. J. Quantum Chem.
14
,
91
(
1978
).
62.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
63.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
64.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
65.
J. Paldus, in New Horizons of Quantum Chemistry, edited by P.-O. Löwdin and B. Pullmann (Reidel, Dordrecht, 1983), p. 31.
66.
R. J. Bartlett, C. E. Dykstra, and J. Paldus, in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, edited by C. E. Dykstra (Reidel, Dordrecht, 1984), p. 127.
67.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
86
,
2881
(
1987
).
68.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
87
,
5361
(
1987
).
69.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
70.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
71.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
, and
M.
Head-Gordon
,
J. Phys. Chem.
94
,
5579
(
1990
).
72.
T. J.
Lee
,
R.
Kobayashi
,
N. C.
Handy
, and
R. D.
Amos
,
J. Chem. Phys.
96
,
8931
(
1992
).
73.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
74.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. Symp.
23
,
199
(
1989
).
75.
D.
Jayatilaka
and
T. J.
Lee
,
J. Chem. Phys.
98
,
9734
(
1993
).
76.
N. C.
Handy
,
P. J.
Knowles
, and
K.
Somasundram
,
Theor. Chim. Acta
68
,
87
(
1985
).
77.
R. J.
Bartlett
and
I.
Shavitt
,
Chem. Phys. Lett.
50
,
190
(
1977
).
78.
W. D.
Laidig
,
G.
Fitzgerald
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
113
,
151
(
1985
).
79.
PSK.O, PSITECH Inc. (1991).
80.
GAUSSIAN92, Revision A, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople (Gaussian, Inc., Pittsburgh, 1992).
81.
M. H. Alexander and H.-J. Werner, presented at the American Chemical Society National Meeting (April, 1993, Denver, CO).
82.
For NCO the assumed DZ(d,p) CISD reference geometry [re(NC) = 1.1920 Å and re(CO) = 1.2345 Å] is very similar to a CCSD(T) optimum structure [re(NC) = 1.1917 Å and re(CO) = 1.2284 Å] obtained with a basis set comprised of 138 functions [P. Botschwina and S. Seeger (personal communication)].
83.
A.
Chédin
,
J. Mol. Spectrosc.
76
,
430
(
1979
).
84.
J.
Plíva
,
V.
S̆pirko
, and
D.
Papous̆ek
,
J. Mol. Spectrosc.
23
,
331
(
1967
).
85.
A. M.
Smith
,
S. L.
Coy
,
W.
Klemperer
, and
K. K.
Lehmann
,
J. Mol. Spectrosc.
134
,
134
(
1989
).
86.
W. S.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1235
(
1957
).
87.
Y.
Morino
,
K.
Kuchitsu
, and
S.
Yamamoto
,
Spectrochim. Acta A
24
,
335
(
1968
).
88.
J. F.
Gaw
and
N. C.
Handy
,
Chem. Phys. Lett.
121
,
321
(
1985
).
89.
H.
Fleurent
,
W.
Joosen
, and
D.
Schoemaker
,
Phys. Rev. B
39
,
10409
(
1989
).
90.
M.
Gruebele
,
M.
Polak
, and
R. J.
Saykally
,
J. Chem. Phys.
87
,
3352
(
1987
).
91.
D. F.
Smith
, Jr.
,
J.
Overend
,
J. C.
Decius
, and
D. J.
Gordon
,
J. Chem. Phys.
58
,
1636
(
1973
).
92.
D. C.
Comeau
,
I.
Shavitt
,
P.
Jensen
, and
P. R.
Bunker
,
J. Chem. Phys.
90
,
6491
(
1989
).
93.
C. B.
Moore
and
G. C.
Pimentel
,
J. Chem. Phys.
38
,
2816
(
1963
).
94.
W. D. Allen, A. L. L. East, and A. G. Császár, in Structures and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Veken, and H. Oberhammer (Kluwer, Dordrecht, 1993).
95.
S. W.
Kucharski
and
R. J.
Bartlett
,
Adv. Quantum Chem.
18
,
281
(
1986
).
96.
K.
Raghavachari
,
Annu. Rev. Phys. Chem.
42
,
615
(
1991
).
97.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
P. R.
Taylor
,
J. Chem. Phys.
88
,
2540
(
1988
).
98.
R. S.
Grev
and
H. F.
Schaefer
III
,
J. Chem. Phys.
97
,
8389
(
1992
).
99.
P.
Ho
and
C. F.
Melius
,
J. Phys. Chem.
94
,
5120
(
1990
).
100.
P.
Ho
,
M. E.
Coltrin
,
J. S.
Binkley
, and
C. F.
Melius
,
J. Phys. Chem.
89
,
4647
(
1985
).
101.
P.
Ho
,
M. E.
Coltrin
,
J. S.
Binkley
, and
C. F.
Melius
,
J. Phys. Chem.
90
,
3399
(
1986
).
102.
C. F. Melius, in Springer-Verlag DFVLR Lecture Notes (Springer, Berlin, 1990).
103.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
104.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
105.
Y.
He
,
X.
Liu
,
M. C.
Lin
, and
C. F.
Melius
,
Int. J. Chem. Kin.
23
,
1129
(
1991
).
106.
K.
Uno
,
T.
Hikida
,
A.
Hiraya
, and
K.
Shobatake
,
Chem. Phys. Lett.
166
,
475
(
1990
).
107.
C. A.
Wight
and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
84
,
2503
(
1980
).
108.
R. H.
Nobes
,
J. A.
Pople
,
L.
Radom
,
N. C.
Handy
, and
P. J.
Knowles
,
Chem. Phys. Lett.
138
,
481
(
1987
).
109.
C. F. Melius (personal communication).
110.
E.
Quiñones
,
J.
Chen
, and
P. J.
Dagdigian
,
Chem. Phys. Lett.
174
,
65
(
1990
).
111.
C. F.
Pau
and
W. J.
Hehre
,
J. Phys. Chem.
86
,
321
(
1982
).
112.
T. J.
Lee
and
A. P.
Rendell
,
Chem. Phys. Lett.
177
,
491
(
1991
).
113.
W.
Koch
and
G.
Frenking
,
J. Phys. Chem.
91
,
49
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.