Femtosecond time‐resolved coherent anti‐Stokes Raman scattering (TRCARS) for the ν1 ring‐breathing mode of neat benzene‐h6 and benzene‐d6 are reported at room temperature (25 °C) and at 6.5 °C. Ultrafast time resolution permits close investigation of the dephasing dynamics at early times. Deviation from the conventional exponential decay is found. The data are analyzed using Kubo line shape theory. The correlation time τc and the rms magnitude Δ of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing and for the linewidth. Spinning motion is suggested as the stochastic process responsible for the vibrational dephasing in those neat liquids.

1.
R.
Kubo
,
Adv. Chem. Phys.
15
,
101
(
1969
);
R.
Kubo
,
J. Math Phys.
4
,
174
(
1963
).
2.
D. W.
Oxtoby
,
Adv. Chem. Phys.
40
,
1
(
1979
).
3.
T.
Joo
,
M. A.
Dugan
, and
A. C.
Albrecht
,
Chem. Phys. Lett.
177
,
4
(
1991
).
4.
R. L.
Fork
,
C. H.
Brito Cruz
,
P. C.
Becker
, and
C. V.
Shank
,
Opt. Lett.
12
,
483
(
1987
).
5.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
173
,
17
(
1993
).
6.
See, for example, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
7.
N.
Herzfeld
,
C. K.
Ingold
, and
H. G.
Poole
,
J. Chem. Soc. Proc.
316
(
1946
).
8.
P. C.
Painter
and
J. L.
Koenig
,
Spectrochim. Acta
33A
,
1003
(
1977
).
9.
J. E.
Griffiths
,
M.
Clerc
, and
P. M.
Rentzepis
,
J. Chem. Phys.
60
,
3824
(
1974
).
10.
D. H. Lee and A. C. Albrecht, Adv. Chem. Phys., LXXXIII, edited by I. Prigogine and Stuart A. Rice (Wiley, New York, 1993), pp. 43–87.
11.
R.
Kumaresan
and
D. W.
Tufts
,
IEEE Trans.
ASSP-30
,
833
(
1982
);
G. L.
Milhauser
and
J. H.
Freed
,
J. Chem. Phys.
85
,
63
(
1986
).
12.
K. T.
Gillen
and
J. E.
Griffiths
,
Chem. Phys. Lett.
17
,
359
(
1972
).
13.
M. A.
Dugan
,
J. S.
Melinger
, and
A. C.
Albrecht
,
Chem. Phys. Lett.
147
,
411
(
1988
);
M. A.
Dugan
and
A. C.
Albrecht
,
Phys. Rev. A
43
,
3877
(
1991
);
M. A.
Dugan
and
A. C.
Albrecht
,
43
,
3922
(
1991
).,
Phys. Rev. A
14.
W.
Zinth
,
R.
Leonhardt
,
W.
Holzapfel
, and
W.
Kaiser
,
IEEE J. Quantum Electron.
24
,
455
(
1988
).
15.
K.
Tanabe
and
J.
Jonas
,
J. Chem. Phys.
67
,
4222
(
1977
).
16.
G.
Döge
,
R.
Arndt
, and
A.
Khuen
,
Chem. Phys.
21
,
53
(
1977
).
17.
W. G.
Rothschild
,
J. Chem. Phys.
65
,
455
(
1976
).
18.
J.
Yarwood
,
R.
Arndt
, and
G.
Döge
,
Chem. Phys.
25
,
387
(
1977
).
19.
J.
Schroeder
,
V. H.
Schiemann
,
P. T.
Sharko
, and
J.
Jonas
,
J. Chem. Phys.
66
,
3215
(
1977
).
20.
D.
Vanden Bout
,
L. J.
Muller
, and
M.
Berg
,
Phys. Rev. Lett.
67
,
3700
(
1991
).
21.
H. R.
Telle
and
A.
Laubereau
,
Chem. Phys. Lett.
94
,
467
(
1983
).
22.
K. S.
Schweizer
and
D.
Chandler
,
J. Chem. Phys.
76
,
2296
(
1982
).
23.
S. F.
Fischer
and
A.
Laubereau
,
Chem. Phys. Lett.
35
,
6
(
1975
).
24.
W. A.
Steele
,
Adv. Chem. Phys.
34
,
1
(
1976
).
25.
H. D.
Dardy
,
V.
Volterra
, and
T. A.
Litovitz
,
J. Chem. Phys.
59
,
4491
(
1973
).
26.
J.
Etchepare
,
G.
Grillon
,
G.
Hamoniaux
,
A.
Antonetti
, and
A.
Orszag
,
Rev. Phys. Appl.
22
,
1749
(
1987
).
27.
P.
Linse
,
S.
Engström
, and
B.
Jönsson
,
Chem. Phys. Lett.
115
,
95
(
1985
).
28.
W. G. Rothschild, Dynamics of Molecular Liquids (Wiley, New York, 1984).
29.
G. J.
Davis
and
M.
Evans
,
J. Chem. Soc. Faraday Trans. II
72
,
1194
(
1976
).
30.
G. R.
Elliott
, and
G. E.
Leroi
,
J. Chem. Phys.
58
,
1253
(
1973
).
31.
G. M.
Korenowski
and
A. C.
Albrecht
,
Chem. Phys.
38
,
239
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.