A combined experimental and theoretical study of the 2‐naphthol⋅H2O/D2O system was performed. Two different rotamers of 2‐naphthol (2‐hydroxynaphthalene, 2HN) exist with the O–H bond in cis‐ and trans‐position relative to the naphthalene frame. Using Hartree–Fock (HF) calculations with the 6‐31G(d,p) basis set, fully energy‐minimized geometries were computed for both cis‐ and trans‐2HN⋅H2O of (a) the equilibrium structures with trans‐linear H‐bond arrangement and Cs symmetry and (b) the lowest‐energy transition states for H atom exchange on the H2O subunit, which have a nonplanar C1 symmetry. Both equilibrium and transition state structures are similar to the corresponding phenol⋅H2O geometries. The H‐bond stabilization energies with zero point energy corrections included are ≊5.7 kcal/mol for both rotamers, ≊2.3 kcal/mol stronger than for the water dimer, and correspond closely to the binding energy calculated for phenol⋅H2O at the same level of theory. Extension of the aromatic π‐system therefore hardly affects the H‐bonding conditions. The barrier height to internal rotation around the H‐bond only amounts to 0.5 kcal/mol. Harmonic vibrational analysis was carried out at these stationary points on the HF/6‐31G(d,p) potential energy surface with focus on the six intermolecular modes. The potential energy distributions and M‐matrices reflect considerable modescrambling for the deuterated isotopomers. For the a′ intermolecular modes anharmonic corrections to the harmonic frequencies were evaluated. The β2 wag mode shows the largest anharmonic contributions. For the torsional mode τ (H2O H‐atom exchange coordinate) the vibrational level structure in an appropriate periodic potential was calculated. On the experimental side resonant‐two‐photon ionization and dispersed fluorescence emission spectra of 2HN⋅H2O and d‐2HN⋅D2O were measured. A detailed assignment of the bands in the intermolecular frequency range is given, based on the calculations. The predicted and measured vibrational frequencies are compared and differences discussed.

1.
M. F.
Vernon
,
D. J.
Krajnovich
,
H. S.
Kwok
,
J. M.
Lisy
,
Y. R.
Shen
, and
Y. T.
Lee
,
J. Chem. Phys.
77
,
47
(
1982
);
R. H.
Page
,
J. G.
Frey
,
Y. R.
Shen
, and
Y. T.
Lee
,
Chem. Phys. Lett.
106
,
373
(
1984
).
2.
D. F.
Coker
,
R. E.
Miller
, and
R. O.
Watts
,
J. Chem. Phys.
82
,
3554
(
1985
).
3.
(a)
L. H.
Coudert
and
J. T.
Hougen
,
J. Mol. Spectrosc.
130
,
86
(
1988
);
(b)
L. H.
Coudert
and
J. T.
Hougen
,
139
,
259
(
1990
).,
J. Mol. Spectrosc.
4.
E.
Zwart
,
J. J.
ter Meulen
,
W. L.
Meerts
, and
L. H.
Coudert
,
J. Mol. Spectrosc.
147
,
27
(
1991
).
5.
Z. S.
Huang
and
R. E.
Miller
,
J. Chem. Phys.
88
,
8008
(
1988
);
Z. S.
Huang
and
R. E.
Miller
,
91
,
6613
(
1989
).,
J. Chem. Phys.
6.
N.
Pugliano
and
R. J.
Saykally
,
J. Chem. Phys.
96
,
1832
(
1992
);
N.
Pugliano
and
R. J.
Saykally
,
Science
257
,
1937
(
1992
).
7.
(a)
O.
Matsuoka
,
E.
Clementi
, and
M.
Yoshimine
,
J. Chem. Phys.
64
,
1351
(
1976
);
(b)
E.
Clementi
and
G.
Corongiu
,
Int. J. Quantum Chem. Quantum Bio. Symp.
10
,
31
(
1983
);
E.
Clementi
and
G.
Corongiu
,
18
,
707
(
1984
); ,
Int. J. Quantum Chem., Quantum Biol. Symp.
(c)
J.
Dietrich
,
C.
Corongiu
, and
E.
Clementi
,
Chem. Phys. Lett.
112
,
426
(
1984
);
(d)
E.
Clementi
and
P.
Habitz
,
J. Phys. Chem.
87
,
2815
(
1983
).
8.
G.
Chalasinski
,
M. M.
Szczesniak
,
P.
Cieplak
, and
S.
Scheiner
,
J. Chem. Phys.
94
,
2873
(
1991
).
9.
E.
Honegger
and
S.
Leutwyler
,
J. Chem. Phys.
88
,
2582
(
1988
);
R.
Knochenmuss
and
S.
Leutwyler
,
J. Chem. Phys.
96
,
5233
(
1992
).,
J. Chem. Phys.
10.
C. E.
Dykstra
,
J. Chem. Phys.
91
,
6472
(
1989
), and references therein.
11.
K.
Hermansson
and
L.
Ojamäe
,
Int. J. Quantum Chem.
42
,
1251
(
1992
);
K.
Hermansson
,
J. Chem. Phys.
89
,
2149
(
1988
).
12.
M. J.
Frisch
,
J. E.
Del Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
2279
(
1986
);
M. J.
Frisch
,
J. A.
Pople
, and
J. E.
Del Bene
,
J. Phys. Chem.
89
,
3664
(
1985
).
13.
B. J.
Smith
,
D. J.
Swanton
,
J. A.
Pople
,
H. F.
Schaefer
III
, and
L.
Radom
,
J. Chem. Phys.
92
,
1240
(
1990
).
14.
C. J.
Marsden
,
B. J.
Smith
,
J. A.
Pople
,
H. F.
Schaefer
III
, and
L.
Radom
,
J. Chem. Phys.
95
,
1825
(
1991
).
15.
R. D.
Amos
,
Chem. Phys.
104
,
145
(
1986
).
16.
M. M.
Szczesniak
and
S.
Scheiner
,
J. Chem. Phys.
84
,
6328
(
1986
).
17.
R. J.
Vos
,
R.
Hendricks
, and
F. B.
van Duijneveldt
,
J. Comput. Chem.
11
,
1
(
1990
).
18.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
19.
P.
Hobza
and
R.
Zahradnik
,
Chem. Rev.
88
,
871
(
1988
).
20.
A. J.
Gotch
and
T. S.
Zwier
,
J. Chem. Phys.
96
,
3388
(
1992
).
21.
S.
Suzuki
,
P. G.
Green
,
R. E.
Bumgarner
,
S.
Dasgupta
,
W. A.
Goddard
III
, and
G. A.
Blake
,
Science
257
,
942
(
1992
).
22.
R.
Knochenmuss
and
S.
Leutwyler
,
J. Chem. Phys.
91
,
1268
(
1989
).
23.
T.
Droz
,
R.
Knochenmuss
, and
S.
Leutwyler
,
J. Chem. Phys.
93
,
45
(
1990
).
24.
L. L.
Connell
,
S. M.
Ohline
,
P. W.
Joireman
,
T. C.
Corcoran
, and
P. M.
Felker
,
J. Chem. Phys.
94
,
4668
(
1991
).
25.
D. F.
Plusquellic
,
X.-Q.
Tan
, and
D. W.
Pratt
,
J. Chem. Phys.
96
,
8026
(
1992
).
26.
M.
Gerhards
,
B.
Kimpfel
,
M.
Pohl
,
M.
Schmitt
, and
K.
Kleinermanns
,
J. Mol. Struct.
270
,
301
(
1992
).
27.
E.
Honegger
,
R.
Bombach
, and
S.
Leutwyler
,
J. Chem. Phys.
85
,
1234
(
1986
).
28.
M.
Schütz
,
T.
Bürgi
, and
S.
Leutwyler
,
Theochem
276
,
117
(
1992
).
29.
M.
Schütz
,
T.
Bürgi
,
S.
Leutwyler
, and
T.
Fischer
,
J. Chem. Phys.
98
,
3763
(
1993
).
30.
(a)
R. F.
Hout
,
B. A.
Levi
, and
W. J.
Hehre
,
J. Comput. Chem.
3
,
234
(
1982
);
(b)
D. J.
DeFrees
and
A. D.
McLean
,
J. Chem. Phys.
82
,
333
(
1985
).
31.
P.
Pulay
,
G.
Fogarasi
,
F.
Pang
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2550
(
1979
).
32.
S. Califano, Vibrational States (Wiley, New York, 1976).
33.
S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes (Elsevier, Amsterdam, 1968).
34.
P.
Pulay
and
F.
Török
,
Acta Chim. Acad. Sci. Hung.
47
,
273
(
1965
).
35.
G.
Keresztury
and
G.
Jalsovszky
,
J. Mol. Struct.
10
,
304
(
1971
).
36.
GAUSSIAN 92, Revision B, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1992.
37.
MOLVIB, written by T. Fischer, available on request.
38.
O.
Cheshnovsky
and
S.
Leutwyler
,
J. Chem. Phys.
88
,
4127
(
1988
).
39.
A.
Oikawa
,
H.
Abe
,
N.
Mikami
, and
M.
Ito
,
J. Phys. Chem.
88
,
5180
(
1984
).
40.
J. M.
Hollas
and
M. Z.
Bin Hussein
,
J. Mol. Spectrosc.
127
,
497
(
1988
).
41.
J. R.
Johnson
,
K. D.
Jordan
,
D. F.
Plusquellic
, and
D. W.
Pratt
,
J. Chem. Phys.
93
,
2258
(
1990
).
42.
H. W. Kroto, Molecular Rotation Spectra (Wiley, New York, 1975).
43.
M. Abramowicz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
44.
S.
Waldenstro/m
and
K.
Razi Naqvi
,
Chem. Phys. Lett.
85
,
581
(
1982
), and references therein.
45.
E.
Keller
,
J. Appl. Crystallogr.
22
,
19
(
1989
). Aperl script converting GAUSSIAN90 or CADPAC 4.0 output to SCHAKAL input can be obtained by anonymous ftp from iacrs2.unibe.ch or kekule.osc.edu.
This content is only available via PDF.
You do not currently have access to this content.