Vibronic spectra are measured for the ground, first excited, and ion ground state of 9,10‐dihydrophenanthrene and each is dominated by a progression in a single vibrational mode. The ion vibrational spectrum is obtained using zero electron kinetic energy photoelectron spectroscopy (ZEKE‐PES) and the I.P. is determined to be 63 645 cm−1. Semiempirical calculations including normal modes analysis were used to determine the vibrational motion responsible for the observed progression. The vibration is primarily a phenyl torsion, but is more complicated than a simple rigid motion. The specific shape of the potentials are determined from the frequencies of the observed vibrations and the relative shifts are obtained from a Franck–Condon analysis. The problem is solved using a one dimensional potential in the normal coordinate. A fluorescence depletion experiment is used to confirm the single‐welled nature of the potential energy surfaces. The phenyl dihedral angles are found to be 18°, 6°, and 14° in the ground, S1, and cation ground electronic states, respectively.

1.
K.
Muller-Dethlefs
and
E. W.
Schlag
,
Annu. Rev. Phys. Chem.
42
,
109
(
1991
).
2.
G.
Reiser
,
W.
Habenicht
,
K.
Muller-Dethlefs
, and
E. W.
Schlag
,
J. Chem. Phys.
95
,
4821
(
1991
).
3.
R. G.
Tonkyn
,
R.
Weidman
,
E. R.
Grant
, and
M. G.
White
,
J. Chem. Phys.
95
,
7033
(
1991
).
4.
H.
Im
and
E. R.
Bernstein
,
J. Chem. Phys.
88
,
7337
(
1988
).
5.
I.
Imamura
and
R.
Hoffmann
,
J. Am. Chem. Soc.
90
,
5379
(
1968
).
6.
Y.
Takei
,
T.
Yamaguchi
,
Y.
Osamura
,
K.
Fuke
, and
K.
Kaya
,
J. Phys. Chem.
92
,
577
(
1988
).
7.
R.
Cosmo
and
S.
Sternhell
,
Aust. J. Chem.
40
,
35
(
1987
).
8.
K.
Mislow
,
M.
Glass
,
H.
Hopps
,
E.
Simon
, and
G.
Wahl
, Jr.
,
J. Am. Chem. Soc.
86
,
1710
(
1964
).
9.
L. R.
Khundkar
and
A.
Zewail
,
J. Chem. Phys.
84
,
1302
(
1986
).
10.
H.
Jonkman
and
D.
Wiersma
,
J. Chem. Phys.
81
,
1573
(
1984
).
11.
Y.
Shin
,
H.
Saigusa
,
M.
Zgierski
,
F.
Zerbetto
, and
E.
Lim
,
J. Chem. Phys.
94
,
3511
(
1991
).
12.
D.
Werst
,
W. R.
Gentry
, and
P.
Barbara
,
J. Phys. Chem.
89
,
729
(
1985
).
13.
D.
Werst
,
A.
Brearley
,
W. R.
Gentry
, and
P.
Barbara
,
J. Am. Chem. Soc.
109
,
32
(
1987
).
14.
F.
Zerbetto
and
M. Z.
Zgierski
,
Chem. Phys.
130
,
45
(
1989
).
15.
J. A.
Syage
,
P. M.
Felker
, and
A. H.
Zewail
,
J. Chem. Phys.
81
,
4685
(
1984
).
16.
J. M.
Hollas
,
E.
Kallipour
, and
S. N.
Thakur
,
J. Mol. Spectrosc.
73
,
240
(
1978
).
17.
J. A.
Syage
,
F.
Al Adel
, and
A. H.
Zewail
,
Chem. Phys. Lett.
103
,
15
(
1983
).
18.
R. J.
Hemley
,
D. G.
Leopold
,
J.
Vaida
, and
M.
Karplus
,
J. Chem. Phys.
82
,
5379
(
1985
).
19.
A.
Furlan
,
M. J.
Riley
, and
S.
Leutwyler
,
J. Chem. Phys.
96
,
7306
(
1992
).
20.
J.
Murakami
,
M.
Ito
, and
K.
Kaya
,
J. Chem. Phys.
74
,
6505
(
1981
).
21.
T.
Chakraborty
and
M.
Chowhurdy
,
Chem. Phys. Lett.
177
,
223
(
1991
).
22.
M. J. S.
Dewar
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
23.
A.
Warshel
and
M.
Karplus
,
J. Am. Chem. Soc.
94
,
5612
(
1972
).
24.
A. Warshel, M. Levitt, S. Lifson, S. Ramachandran, J. D. Vaughan, T. G. Lenz, and A. K. Rappe, QCPE No. 593, Indiana University, 1990.
25.
M. Z.
Zgierski
,
F.
Zerbetto
,
Y.
Shin
, and
E.
Lim
,
J. Chem. Phys.
96
,
7229
(
1992
).
26.
Xu
Zhang
,
J. M.
Smith
, and
J.
Knee
,
J. Chem. Phys.
97
,
2843
(
1992
).
27.
K. S.
Pitzer
,
J. Chem. Phys.
10
,
428
(
1942
).
28.
K. S.
Pitzer
,
J. Chem. Phys.
14
,
239
(
1946
).
29.
A.
Sygula
and
P.
Rabideau
,
J. Comp. Chem.
13
,
633
(
1992
).
30.
L. W. Johnson and R. D. Reiss, in Numerical Analysis, 1st ed. (Addison-Wesley, Reading, MA, 1977), p. 330.
This content is only available via PDF.
You do not currently have access to this content.