Path integral quantum transition state theory is implemented to calculate the diffusion constant for atomic hydrogen on metal surfaces at low coverage. The path integral theory provides a unified computational methodology to study the influence on the diffusion constant from multidimensional tunneling, vibrational mode quantization, surface distortion, and phonon thermal fluctuations. An approximate technique has also been employed to incorporate the dissipative effect from the electron–hole pair excitations of the metal. The hydrogen diffusion rates on two model metal surfaces are calculated. These surface models are (1) a simple rigid model of the Cu(100) surface allowing a comparison with previous theoretical results, and (2) a more realistic moving model of the Cu(100) surface to examine the effects of surface atom motion. The quantum diffusion constant for hydrogen is calculated over a temperature range of 100–300 K. The largest effect from the moving lattice atoms is found to be the surface distortion effect, leading to a 5% modification of the activation free energy for site‐to‐site hopping. The phonon thermal fluctuations are not found to significantly enhance or dissipate the tunneling at low temperatures. The electron–hole pair dissipation is, however, estimated to have an effect on the tunneling behavior at the lowest temperature studied (100 K).

1.
For experimental work on hydrogen on metals see, for example(arpar;
R.
DiFoggio
and
R.
Gomer
,
Phys. Rev. B
25
,
3490
(
1982
);
T.-S.
Lin
and
R.
Gomer
,
Surf. Sci.
255
,
41
(
1989
);
S. M.
George
,
A. M.
DeSantolo
, and
R. B.
Hall
,
Surf. Sci.
159
,
L425
(
1985
); ,
Surf. Sci.
D. R.
Mullins
,
B.
Roop
,
S. A.
Costello
, and
J. M.
White
,
Surf. Sci.
186
,
67
(
1987
); ,
Surf. Sci.
C.-H.
Hsu
,
B. E.
Larson
,
M.
El-Batanouny
,
C. R.
Willis
, and
K. M.
Martini
,
Phys. Rev. Lett.
66
,
3164
(
1991
);
C.
Astaldi
,
A.
Bianco
,
S.
Modesti
, and
E.
Tosatti
,
Phys. Rev. Lett.
68
,
90
(
1992
); ,
Phys. Rev. Lett.
X. D.
Zhu
,
A.
Lee
,
A.
Wong
, and
U.
Linke
,
Phys. Rev. Lett.
68
,
1862
(
1992
).,
Phys. Rev. Lett.
2.
H.
Metiu
,
K.
Kitahara
,
R.
Silbey
, and
J.
Ross
,
Chem. Phys. Lett.
43
,
189
(
1976
);
K.
Kitahara
,
H.
Metiu
,
J.
Ross
, and
R.
Silbey
,
J. Chem. Phys.
65
,
2871
(
1976
);
S.
Efrima
and
H.
Metiu
,
Surf. Sci.
75
,
721
(
1978
);
S.
Efrima
and
H.
Metiu
,
J. Chem. Phys.
69
,
2286
(
1978
);
K. F.
Freed
,
J. Chem. Phys.
82
,
5264
(
1985
); ,
J. Chem. Phys.
A.
Auerbach
,
K. F.
Freed
, and
R.
Gomer
,
J. Chem. Phys.
86
,
2356
(
1987
); ,
J. Chem. Phys.
R.
Jaquet
and
W. H.
Miller
,
J. Phys. Chem.
89
,
2139
(
1985
);
J. P.
Sethna
,
Phys. Rev. B
24
,
698
(
1981
);
K. A.
Muttalib
and
J. P.
Sethna
,
Phys. Rev. B
32
,
3462
(
1985
); ,
Phys. Rev. B
M. D.
Miller
,
Surf. Sci.
127
,
383
(
1983
);
M.
Tringides
and
R.
Gomer
,
Surf. Sci.
166
,
419
,
440
(
1986
).,
Surf. Sci.
3.
K.
Haug
and
H.
Metiu
,
J. Chem. Phys.
94
,
3251
(
1991
).
4.
S. M.
Valone
,
A. F.
Voter
, and
J. D.
Doll
,
Surf. Sci.
155
,
687
(
1985
);
S. M.
Valone
,
A. F.
Voter
, and
J. D.
Doll
,
J. Chem. Phys.
85
,
7480
(
1986
).
5.
K.
Haug
,
G.
Wahnström
, and
H.
Metiu
,
J. Chem. Phys.
92
,
2083
(
1990
).
6.
J. G.
Lauderdale
and
D. G.
Truhlar
,
J. Am. Chem. Soc.
107
,
4590
(
1985
);
J. G.
Lauderdale
and
D. G.
Truhlar
,
Surf. Sci.
164
,
558
(
1985
).
7.
lpar;a)
T. N.
Truong
and
D. G.
Truhlar
,
J. Phys. Chem.
91
,
6229
(
1987
);
T. N.
Truong
and
D. G.
Truhlar
,
J. Chem. Phys.
88
,
6611
(
1988
);
(b)
J. G.
Lauderdale
and
D. G.
Truhlar
,
J. Chem. Phys.
84
,
1843
(
1986
).,
J. Chem. Phys.
8.
B. M.
Rice
,
B. C.
Garrett
,
M. L.
Koszykowski
,
S. M.
Foiles
, and
M. S.
Daw
,
J. Chem. Phys.
92
,
775
(
1990
).
9.
T. N.
Truong
and
D. G.
Truhlar
,
J. Chem. Phys.
93
,
2125
(
1990
).
10.
K. B.
Whaley
,
A.
Nitzan
, and
R. B.
Gerber
,
J. Chem. Phys.
84
,
5181
(
1986
);
P.
Reilly
,
R. A.
Harris
, and
K. B.
Whaley
,
J. Chem. Phys.
95
,
8599
(
1991
);
P.
Reilly
,
R. A.
Harris
, and
K. B.
Whaley
,
97
,
6975
(
1992
).,
J. Chem. Phys.
11.
J. D.
Doll
and
A. F.
Voter
,
Annu. Rev. Phys. Chem.
38
,
413
(
1987
).
12.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
13.
(a)
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
);
G. A.
Voth
and
E. V.
O’Gorman
,
J. Chem. Phys.
94
,
7342
(
1991
);
D. H.
Li
and
G. A.
Voth
,
J. Phys. Chem.
95
,
10425
(
1991
);
J.
Gehlen
,
D.
Chandler
,
H. J.
Kim
, and
J. T.
Hynes
,
J. Phys. Chem.
96
,
1748
(
1992
); ,
J. Phys. Chem.
J.
Gehlen
and
D.
Chandler
,
J. Chem. Phys.
97
,
4958
(
1992
).
14.
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
);
M. J.
Gillan
,
Phys. Rev. Lett.
58
,
563
(
1987
).
15.
R. P. Feynman, Statistical Mechanics (Addison Wesley, Reading, 1972), Chap. 3.
16.
For classical molecular dynamics simulations based on this idea, see
G.
Wahnstrom
,
Chem. Phys. Lett.
163
,
401
(
1989
);
Y.
Li
and
G.
Wahnstrom
,
Phys. Rev. Lett.
68
,
3444
(
1992
).
17.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys. (N.Y.)
24
,
118
(
1963
).
18.
See, for example,
A. O.
Calderia
and
A. J.
Leggett
,
Ann. Phys. (N.Y.)
149
,
374
(
1983
);
A. O.
Calderia
and
A. J.
Leggett
,
153
,
445
(); ,
Ann. Phys. (N.Y.)
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
19.
J. Kondo, in Fermi Surface Effects, Springer Series in Solid-State Sciences, Vol. 77, edited by J. Kondo and A. Yoshimori (Springer, Berlin, 1988);
A.
Yamada
,
A.
Sahurai
, and
S.
Miyazima
,
Prog. Theor. Phys.
73
,
1342
(
1985
);
see also, U. Weiss, R. Görlich, and M. Wollensak, in Path Integrals from meV to MeV, edited by V. Sayakanit and W. Sritrakool (World Scientific, New Jersey, 1989).
20.
For reviews, see
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1987
);
D. L.
Freeman
and
J. D.
Doll
,
Adv. Chem. Phys. B
70
,
139
(
1988
);
J. D.
Doll
and
D. L.
Freeman
,
Adv. Chem. Phys. B
73
,
289
(
1989
); ,
Adv. Chem. Phys.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
73
,
61
(
1990
);
Quantum Simulations of Condensed Matter Phenomena, edited by J. D. Doll and J. E. Gubematis (World Scientific, Singapore, 1990);
D. Chandler in Liquides, Cristallisation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier Science, B.V., 1990).
21.
R. A.
Friesner
and
R. M.
Levy
,
J. Chem. Phys.
80
,
4488
(
1984
).
22.
G. R.
Haynes
and
G. A.
Voth
,
Phys. Rev. A
15
46
,
2143
(
1992
).
23.
A. R.
Gregory
,
A.
Gelb
, and
R.
Silbey
,
Surf. Sci.
74
,
497
(
1978
).
24.
G. A.
Voth
,
J. Chem. Phys.
94
,
4095
(
1991
).
25.
For the Cu-Cu pair potential, we have used a value for the Morse parameter of α = 2.286å−1 listed in the paper by Lauderdale and Truhlar (Ref. 6) rather than the value of α = 2.86å−1 listed in the later papers by Truong and Truhlar (Ref. 7). More importantly, for the potential parameters listed in Sec. Ill B we have calculated the classical barrier between two hydrogen binding sites on the rigid Cu surface to be 12.08 kcal/mol, whereas Truong and Truhlar report a barrier of 11.92 kcal/mol. We believe the latter discrepancy has its origin in the cutoff region of the potential. We have calculated that the H-Cu pair potential should have a value of —0.0093 kcal/mol at R = RC whereas Truhlar and co-workers (Ref. 7) report —0.0181 kcal/mol. While this difference is small for a single pairwise interaction, there are many such H-Cu interactions which collectively contribute to the observed differences. The slight difference between the Cu-Cu Morse potentials used in the two studies (i.e., different α01 parameters) does not explain (or affect) the latter disagreement for the rigid surface, but it does contribute further small differences to the barrier height in the case of the moving surface.
26.
A better approach might be to employ a method similar to that developed in
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
) for treating adsorbate vibrational relaxation on metal surfaces.
27.
R. P.
McRae
,
G. K.
Schenter
,
B. C.
Garrett
,
G. R.
Haynes
,
G. A.
Voth
, and
G. C.
Schatz
,
J. Chem. Phys.
97
,
7392
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.