The results of a systematic study of molecular properties by density functional theory (DFT) are presented and discussed. Equilibrium geometries, dipole moments, harmonic vibrational frequencies, and atomization energies were calculated for a set of 32 small neutral molecules by six different local and gradient‐corrected DFT methods, and also by the abinitio methods Hartree–Fock, second‐order Mo/ller–Plesset, and quadratic configuration interaction with single and double substitutions (QCISD). The standard 6‐31G* basis set was used for orbital expansion, and self‐consistent Kohn–Sham orbitals were obtained by all DFT methods, without employing any auxiliary fitting techniques. Comparison with experimental results shows the density functional geometries and dipole moments to be generally no better than or inferior to those predicted by the conventional abinitio methods with this particular basis set. The density functional vibrational frequencies compare favorably with the abinitio results, while for atomization energies, two of the DFT methods give excellent agreement with experiment and are clearly superior to all other methods considered.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev. B
136
,
864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev. A
140
,
1133
(
1965
).
3.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
4.
R. O.
Jones
and
O.
Gunnarsson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
5.
Density Functional Methods in Chemistry, edited by J. K. Labanowski and J. Andzelm (Springer-Verlag, New York, 1991).
6.
T.
Ziegler
,
Chem. Rev.
91
,
651
(
1991
).
7.
E. P.
Wigner
,
Trans. Faraday Soc.
34
,
678
(
1938
).
8.
F.
Herman
,
J. P.
Van Dyke
, and
I. B.
Ortenburger
,
Phys. Rev. Lett.
22
,
807
(
1969
).
9.
J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).
10.
G.
Brual
, Jr.
and
S. M.
Rothstein
,
J. Chem. Phys.
69
,
1177
(
1978
).
11.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
12.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
13.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
14.
S. K.
Ghosh
and
R. G.
Parr
,
Phys. Rev. A
34
,
785
(
1986
).
15.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
16.
A. D.
Becke
,
J. Chem. Phys.
88
,
1053
(
1988
).
17.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
18.
A.
Cedillo
,
J.
Robles
, and
J. L.
Gásquez
,
Phys. Rev. A
38
,
1697
(
1988
).
19.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
20.
L. C.
Wilson
and
M.
Levy
,
Phys. Rev. B
41
,
12
930
(
1990
).
21.
J. P. Perdew, in Proceedings of the 21st Annual International Symposium “Electronic Structure of Solids” (Nova Science, Commack, NY, in press).
22.
B.
Delley
,
J. Chem. Phys.
94
,
7245
(
1991
).
23.
J. M.
Seminario
,
M. C.
Concha
, and
P.
Politzer
,
Int. J. Quantum Chem. Symp.
25
,
249
(
1991
).
24.
J.
Andzelm
and
E.
Wimmer
,
J. Chem. Phys.
96
,
1280
(
1992
).
25.
A. D.
Becke
,
J. Chem. Phys.
96
,
2155
(
1992
).
26.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
197
,
499
(
1992
).
27.
N. C.
Handy
,
P. E.
Maslen
,
R. D.
Amos
, and
J. S.
Andrews
,
Chem. Phys. Lett.
197
,
506
(
1992
).
28.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
97
,
7846
(
1992
).
29.
C. W.
Murray
,
G. J.
Laming
,
N. C.
Handy
, and
R. D.
Amos
,
Chem. Phys. Lett.
199
,
551
(
1992
).
30.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Int. J. Quantum Chem. Symp.
26
,
319
(
1992
).
31.
C. Gonzalez, B. G. Johnson, and J. A. Pople (unpublished).
32.
J.
Andzelm
and
E.
Wimmer
,
Physica B
172
,
307
(
1991
).
33.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
34.
A. D.
Becke
,
Int. J. Quantum Chem. Symp.
23
,
599
(
1989
).
35.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
36.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
37.
B.
Miehlich
,
A.
Savin
,
H.
StolL
and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
38.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
39.
M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople,GAUSSIAN 92, Gaussian, Inc., Pittsburgh, PA, 1992.
40.
We have previously termed functionals only of ρα and ρβ zeroth-order functionals because they contain no derivative-correction terms. Functionals which also incorporate some or all of the γ’s but no higher-order derivatives are called first-order functionals. In general, we refer to functionals which involve nontrivially the spin densities and their first n derivatives as nth-order functionals, though we currently know of no functional higher than first-order which is widely used. We note that the original formulation of the LYP functional (Ref. 19) contains the density Laplacian, apparently making LYP second order, but this second-derivative dependence is trivial and can be eliminated by partial integration (Ref. 37). Therefore, the LYP functional is actually first order.
41.
C.
Satoko
,
Chem. Phys. Lett.
83
,
111
(
1981
).
42.
A. D.
Becke
,
J. Chem. Phys
88
,
2547
(
1988
).
43.
C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phys. (in press).
44.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
15
,
48
(
1975
).
45.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
16
,
293
(
1976
).
46.
A. H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, NJ, 1971).
47.
M. J. Frisch, J. B. Foresman, and Æ. Frisch, Gaussian 92 Programmer’s Guide (Gaussian, Inc., Pittsburgh, PA, 1992), p. 335.
48.
P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch (unpublished).
49.
J. A.
Pople
,
P. M. W.
Gill
, and
B. G.
Johnson
,
Chem. Phys. Lett.
199
,
557
(
1992
).
50.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
51.
G. G.
Hall
,
Proc. R. Soc. London, Ser. A
205
,
541
(
1951
).
52.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
53.
K.
Kobayashi
,
N.
Kurita
,
H.
Kumahora
, and
K.
Tago
,
Phys. Rev. A
43
,
5810
(
1991
).
54.
In the Appendix of Ref. 22, Delley briefly discusses the effect of the weight derivatives on equilibrium bond length geometry and states which, omitting the weight derivative term, leads to “a residual of 10−3a.u. at the energy minimum” (the grid used is not stated). He accepts this error as tolerable and does not include the weight derivatives, but we feel it is too large to be ignored.
55.
P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys. Lett. (submitted).
56.
E. R.
Davidson
,
S. A.
Hagstrom
,
S. J.
Chakravorty
,
V. M.
Umar
, and
C.
Froese
,
Phys. Rev. A
44
,
7071
(
1991
).
57.
J. A.
Pople
,
M.
Head-Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
).
58.
D. R. Salahub, R. Fournier, P. Mlynarski, I. Papai, A. St. Amant, and J. Ushio, in Density Functional Methods in Chemistry, edited by J. K. Labanowski and J. Andzelm (Springer-Verlag, New York, 1991).
59.
M. P. C. M.
Krijn
and
D.
Feil
,
Chem. Phys. Lett.
150
,
45
(
1988
).
60.
B. G. Johnson, P. M. W. Gill, and J. A. Pople (unpublished results).
61.
B. G. Johnson, M. J. Frisch, P. M. W. Gill, and J. A. Pople (unpublished) .
62.
We note that the function t(μ)is singular when μ = 1, but in practice this does not arise because μ = 1 implies the particular cell function is equal to zero, and a cutoff scheme avoids the evaluation.
63.
D. J.
Defrees
,
B. A.
Levi
,
S. K.
Pollack
,
W. J.
Hehre
,
J. S.
Binkley
, and
J. A.
Pople
,
J. Am. Chem. Soc.
101
,
4085
(
1979
).
64.
G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, New York, 1950).
65.
Landoldt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege, New Series, Group II, Vol. 7 (Springer-Verlag, Berlin, 1976).
66.
Handbook of Chemistry and Physics, edited by D. R. Lide, 72nd ed. (CRC, Boca Raton, FL, 1991).
67.
Landoldt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege, New Series, Group II, Vol. 6 (Springer-Verlag, Berlin, 1974).
68.
Landoldt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege, New Series, Group II, Vol. 14a (Springer-Verlag, Berlin, 1982).
69.
J. A.
Pople
,
H. B.
Schlegel
,
R.
Krishnan
,
D. J.
Defrees
,
J. S.
Binkley
,
M. J.
Frisch
,
R. A.
Whiteside
,
R. F.
Hout
, and
W. J.
Hehre
,
Int. J. Quantum Chem. Symp.
15
,
269
(
1981
).
70.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data
19
,
387
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.