Different structural models for solid argon clusters with more than 500 atoms, that have been proposed previously on the basis of energy considerations, but whose origin and growth histories are not well understood, are compared with other models that have been devised mainly to overcome these difficulties, at the expense, however, of a smaller binding energy. Diffraction functions have been calculated for a variety of structures and sizes, and are compared with the observed electron‐diffraction patterns obtained by Farges et al. [Adv. Chem. Phys. 70, 45 (1988)]. Since the nonsplitting of the first peak in these patterns up to N∼3000 suggests the absence of the— energetically most favorable— decahedra, and other features reflect an increasing fraction of clusters with— at that size unfavorable— bulklike fcc structure, it seems appropriate to relax the energy criterion and to consider other properties as well, notably the rate of growth. Defect‐fcc clusters, obtained from perfect fcc crystallites by introducing at least two crossing stacking faults, derive this property from a modified surface structure, involving immobile, nonvanishing, stacking fault resisting steps. Calculated diffraction functions compare favorably with observed patterns for N∼600 and N∼3000. A growth mechanism is proposed which can explain the disappearance of multishell icosahedra and the appearance of (defect‐) fcc clusters at N∼500, with no structural transition involved.
Skip Nav Destination
Article navigation
15 March 1993
Research Article|
March 15 1993
Icosahedral, decahedral, fcc, and defect‐fcc structural models for ArN clusters, N≳500: How plausible are they?
Benjamin W. van de Waal
Benjamin W. van de Waal
Department of Physics, CT1324, University of Twente, POB 217, 7500AE Enschede, The Netherlands
Search for other works by this author on:
J. Chem. Phys. 98, 4909–4919 (1993)
Article history
Received:
July 29 1992
Accepted:
December 02 1992
Citation
Benjamin W. van de Waal; Icosahedral, decahedral, fcc, and defect‐fcc structural models for ArN clusters, N≳500: How plausible are they?. J. Chem. Phys. 15 March 1993; 98 (6): 4909–4919. https://doi.org/10.1063/1.464946
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00