Different structural models for solid argon clusters with more than 500 atoms, that have been proposed previously on the basis of energy considerations, but whose origin and growth histories are not well understood, are compared with other models that have been devised mainly to overcome these difficulties, at the expense, however, of a smaller binding energy. Diffraction functions have been calculated for a variety of structures and sizes, and are compared with the observed electron‐diffraction patterns obtained by Farges etal. [Adv. Chem. Phys. 70, 45 (1988)]. Since the nonsplitting of the first peak in these patterns up to N∼3000 suggests the absence of the— energetically most favorable— decahedra, and other features reflect an increasing fraction of clusters with— at that size unfavorable— bulklike fcc structure, it seems appropriate to relax the energy criterion and to consider other properties as well, notably the rate of growth. Defect‐fcc clusters, obtained from perfect fcc crystallites by introducing at least two crossing stacking faults, derive this property from a modified surface structure, involving immobile, nonvanishing, stacking fault resisting steps. Calculated diffraction functions compare favorably with observed patterns for N∼600 and N∼3000. A growth mechanism is proposed which can explain the disappearance of multishell icosahedra and the appearance of (defect‐) fcc clusters at N∼500, with no structural transition involved.

1.
A.
Yokozeki
,
J. Chem. Phys.
68
,
3766
(
1978
).
2.
J.
Farges
,
M. F.
de Feraudy
,
B.
Raoult
, and
G.
Torchet
,
J. Chem. Phys.
78
,
5067
(
1983
).
3.
J.
Farges
,
M. F.
de Feraudy
,
B.
Raoult
, and
G.
Torchet
,
J. Chem. Phys.
84
,
3491
(
1986
).
4.
L. S.
Bartell
,
Chem. Rev.
86
,
491
(
1986
) (Review).
5.
J.
Farges
,
M. F.
de Feraudy
,
B.
Raoult
, and
G.
Torchet
,
Adv. Chem. Phys.
70
,
45
(
1988
) (Review).
6.
J. W.
Lee
and
G. D.
Stein
,
J. Phys. Chem.
91
,
2450
(
1987
).
7.
T. S.
Dibble
and
L. S.
Bartell
,
J. Phys. Chem.
96
,
8603
(
1992
), and references cited therein.
8.
G. Torchet, J. Farges, M. F. de Feraudy, and B. Raoult, in The Chemical Physics of Atomic and Molecular Clusters, edited by G. Scoles (North-Holland, Amsterdam, 1990), p. 513 (Review).
9.
B. D.
Hall
,
M.
Flüeli
,
R.
Monot
, and
J.-P.
Borel
,
Phys. Rev. B
43
,
3906
(
1991
).
10.
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
47
,
1121
(
1981
).
11.
L.
Friedman
and
R. J.
Beuhler
,
J. Chem. Phys.
78
,
4669
(
1983
).
12.
A.
Ding
and
J.
Hesslich
,
Chem. Phys. Lett.
94
,
54
(
1983
).
13.
I. A.
Harris
,
R. S.
Kidwell
, and
J. A.
Northby
,
Phys. Rev. Lett.
53
,
2390
(
1984
).
14.
J. C.
Phillips
,
Chem. Rev.
86
,
619
(
1986
) (Review).
15.
I. A.
Harris
,
K. A.
Norman
,
R. V.
Mulkern
, and
J. A.
Northby
,
Chem. Phys. Lett.
130
,
316
(
1986
).
16.
K. E.
Schriver
,
M. Y.
Hahn
,
J. L.
Persson
,
M. E.
LaVilla
, and
R. L.
Whetten
,
J. Phys. Chem.
93
,
2869
(
1989
).
17.
W.
Miehle
,
O.
Kandler
,
T.
Leisner
, and
O.
Echt
,
J. Chem. Phys.
91
,
5940
(
1989
).
18.
T. P.
Martin
,
T.
Bergmann
,
H.
Göhlich
, and
T.
Lange
,
Chem. Phys. Lett.
176
,
343
(
1991
);
T. P.
Martin
,
T.
Bergmann
,
H.
Göhlich
, and
T.
Lange
,
J. Phys. Chem.
95
,
6421
(
1991
).
19.
D. C.
Easter
,
M. S.
El-Shall
,
M. Y.
Hahn
, and
R. L.
Whetten
,
Chem. Phys. Lett.
157
,
277
(
1989
).
20.
D. C.
Easter
,
R. L.
Whetten
, and
J. E.
Wessel
,
J. Chem. Phys.
94
,
3347
(
1991
).
21.
S. M.
Beck
and
J. H.
Hecht
,
J. Chem. Phys.
96
,
1975
(
1992
).
22.
T. D.
Klots
,
B. J.
Winter
,
E. K.
Parks
, and
S. J.
Riley
,
J. Chem. Phys.
92
,
2110
(
1990
);
T. D.
Klots
,
B. J.
Winter
,
E. K.
Parks
, and
S. J.
Riley
,
95
,
8919
(
1991
).,
J. Chem. Phys.
23.
E. K.
Parks
,
B. J.
Winter
,
T. D.
Klots
, and
S. J.
Riley
,
J. Chem. Phys.
94
,
1882
(
1991
).
24.
W.
Wefelmeier
,
Z. Phys.
107
,
332
(
1937
).
25.
M. R.
Hoare
,
Adv. Chem. Phys.
40
,
49
(
1979
) (Review).
26.
J.
Farges
,
M. F.
de Feraudy
,
B.
Raoult
, and
G.
Torchet
,
Surf. Sci.
156
,
370
(
1985
).
27.
A. L.
Mackay
,
Acta Cryst.
15
,
916
(
1962
).
28.
J. A.
Northby
,
J. Chem. Phys.
87
,
6166
(
1987
).
29.
B. W.
van de Waal
,
J. Chem. Phys.
90
,
3407
(
1989
).
30.
J.
Xie
,
J. A.
Northby
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
91
,
612
(
1989
).
31.
J. G.
Allpress
and
J. V.
Sanders
,
Surf. Sci.
7
,
1
(
1967
);
J. G.
Allpress
and
J. V.
Sanders
,
Aust. J. Phys.
23
,
23
(
1970
).
32.
T.
Hayashi
,
T.
Ohno
,
Y.
Shigeki
, and
R.
Uyeda
,
Jpn. J. Appl. Phys.
16
,
705
(
1977
).
33.
S.
Ino
,
J. Phys. Soc. Jpn.
21
,
346
(
1966
);
S.
Ino
,
27
,
941
(
1969
).,
J. Phys. Soc. Jpn.
34.
S.
Ino
and
T.
Ogawa
,
J. Phys. Soc. Jpn.
22
,
1369
(
1967
).
35.
L. D.
Marks
,
Philos. Mag. A
49
,
81
(
1984
).
36.
A.
Howie
and
L. D.
Marks
,
Philos. Mag. A
49
,
95
(
1984
).
37.
B.
Raoult
,
J.
Farges
,
M. F.
de Feraudy
, and
G.
Torchet
,
Philos. Mag. B
60
,
881
(
1989
).
38.
C. L.
Cleveland
and
U.
Landman
,
J. Chem. Phys.
94
,
7376
(
1991
).
39.
J.
Maddox
,
Nature (London)
335
,
201
(
1988
).
40.
J.
Pannetier
,
J.
Bassas-Alsina
,
J.
Rodriguez-Carvajal
, and
V.
Caignaert
,
Nature (London)
346
,
343
(
1990
).
41.
R. J.
Gdanitz
,
Chem. Phys. Lett.
190
,
391
(
1992
).
42.
See, for example, Rare Gas Solids, edited by M. L. Klein and J. A. Venables, (Academic, London, 1976).
43.
T.
Kihara
and
S.
Koba
,
J. Phys. Soc. Jpn.
7
,
348
(
1952
).
44.
N.
Ohtomo
and
Y.
Tanaka
,
J. Phys. Soc. Jpn.
56
,
2801
,
2814
(
1987
).
45.
J. E.
Fischer
,
P. A.
Heiney
,
A. R.
McGhie
,
W. J.
Romanow
,
A. M.
Denenstein
,
J. P.
McCauley
,Jr.
,
A. B.
Smith
III
, and
D. E.
Cox
,
Science
252
,
1288
(
1991
);
J. E.
Fischer
,
P. A.
Heiney
,
A. R.
McGhie
,
W. J.
Romanow
,
A. M.
Denenstein
,
J. P.
McCauley
, Jr.
,
A. B.
Smith
III
, and
D. E.
Cox
,
Phys. Rev. Lett.
66
,
2911
(
1991
).
46.
B. W.
van de Waal
,
Z. Phys. D
20
,
349
(
1991
).
47.
B. W.
van de Waal
,
Phys. Rev. Lett.
67
,
3263
(
1991
).
48.
W. K.
Burton
,
N.
Cabrera
, and
F. C.
Frank
,
Philos. Trans. R. Soc. A
243
,
299
(
1951
).
49.
J. J.
Burton
,
J. Chem. Phys.
52
,
345
(
1970
);
J. J.
Burton
,
56
,
3133
(
1972
); ,
J. Chem. Phys.
J. J.
Burton
,
Chem. Phys. Lett.
7
,
567
(
1970
);
J. J.
Burton
,
17
,
199
(
1972
); ,
Chem. Phys. Lett.
J. J.
Burton
,
J. Chem. Soc. Faraday Trans. 2
69
,
540
(
1973
);
J. J.
Burton
,
Nature (London)
229
,
335
(
1971
);
J. J.
Burton
,
Acta Metal.
21
,
1225
(
1973
).
50.
M. R.
Hoare
and
P.
Pal
,
Nature (London)
230
,
5
(
1971
);
M. R.
Hoare
and
P.
Pal
,
236
,
35
(
1972
); ,
Nature (London)
M. R.
Hoare
and
P.
Pal
,
J. Cryst. Growth
17
,
77
(
1972
);
M. R.
Hoare
and
P.
Pal
,
Adv. Phys.
20
,
161
(
1971
);
M. R.
Hoare
and
P.
Pal
,
24
,
645
(
1975
); ,
Adv. Phys.
M. R.
Hoare
and
P.
Pal
,
32
,
791
(
1983
).,
Adv. Phys.
51.
A.
Bonissent
and
B.
Mutaftschiev
,
J. Chem. Phys.
58
,
3727
(
1973
).
52.
W.
Damgaard Kristensen
,
E. J.
Jensen
, and
R. M. J.
Cotterill
,
J. Chem. Phys.
60
,
4161
(
1974
).
53.
R. D.
Etters
and
J.
Kaelberer
,
Phys. Rev. A
11
,
1068
(
1975
);
R. D.
Etters
and
J.
Kaelberer
,
J. Chem. Phys.
66
,
3233
,
5112
(
1977
).
54.
J. A. Barker, J. Phys. (Paris), Colloq. 1977, (2), 37.
55.
G. L.
Griffin
and
R. P.
Andres
,
J. Chem. Phys.
71
,
2522
(
1979
).
56.
V. V.
Nauchitel
and
A. J.
Pertsin
,
Mol. Phys.
40
,
1341
(
1980
).
57.
E. E.
Polymeropoulos
and
J.
Brickmann
,
Chem. Phys. Lett.
92
,
59
(
1982
).
58.
D. L.
Freeman
and
J. D.
Doll
,
J. Chem. Phys.
82
,
462
(
1985
).
59.
E.
Blaisten-Barojas
and
H. C.
Andersen
,
Surf. Sci.
156
,
548
(
1985
).
60.
T. L.
Beck
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
87
,
545
(
1987
).
61.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
).
62.
H.-G.
Fritsche
,
Phys. Stat. Sol. B
143
,
Kll
(
1987
).
63.
H. L.
Davis
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
86
,
6456
(
1987
).
64.
T. L.
Beck
and
R. S.
Berry
,
J. Chem. Phys.
88
,
3910
(
1988
).
65.
N.
Quirke
,
Mol. Sim.
1
,
249
(
1988
).
66.
L. L.
Boyer
and
J. Q.
Broughton
,
Phys. Rev. B
42
,
11461
(
1990
).
67.
D. J.
Wales
and
R. S.
Berry
,
J. Chem. Phys.
92
,
4283
(
1990
).
68.
F. H.
Stillinger
and
D. K.
Stillinger
,
J. Chem. Phys.
93
,
6013
(
1990
).
69.
D. D.
Frantz
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
93
,
2769
(
1990
).
70.
J.
Kostrowicki
,
L.
Piela
,
B. J.
Cherayil
, and
H. A.
Scheraga
,
J. Phys. Chem.
95
,
4113
(
1991
).
71.
J.
Uppenbrink
and
D. J.
Wales
,
J. Chem. Soc. Faraday Trans.
87
,
215
(
1991
),
J.
Uppenbrink
and
D. J.
Wales
,
J. Chem. Phys.
96
,
8520
(
1992
).
72.
R. W.
Hasse
,
Phys. Lett. A
161
,
130
(
1991
).
73.
Throughout this paper the binding energy E of a cluster is considered to be a positive quantity (i.e.,E = −ELJ). Consequently, high-energy clusters are located above less favorable competitors in the diagram of Fig. 1.
74.
Stable is used here to indicate the global minimum of the potential-energy surface, not the positive definiteness of the Hessian.
75.
The coefficients of Eq. (2) were taken from Ref. 30: A = 8.610 674 5,B = −16.046 618,C = 5.892 919 5,D = 4.405 079 7.
76.
The contributions ΔC.d−1+Δ.D d−2 can be easily recognized in Fig. 1 of Ref. 29.
77.
A = 8.557 280 8,B = 14.712 759 9,C = 4.767 040 2,D = 3.223 877 4.
78.
E.
Burke
,
J. Q.
Broughton
, and
G. H.
Gilmer
,
J. Chem. Phys.
89
,
1030
(
1988
).
79.
F. C.
Frank
,
Discuss. Faraday Soc.
5
,
48
(
1949
);
F. C.
Frank
,
Nature (London)
163
,
398
(
1949
).
80.
R. J.
Keyse
and
J. A.
Venables
,
J. Phys. C
18
,
4435
(
1985
).
81.
J. N.
Cape
,
J. L.
Finney
, and
L. V.
Woodcock
,
J. Chem. Phys.
75
,
2366
(
1981
).
82.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
83.
H.
Jónsson
and
H. C.
Andersen
,
Phys. Rev. Lett.
60
,
2295
(
1988
).
84.
T.
Kondo
,
K.
Tsumuraya
, and
M. S.
Watanabe
,
J. Chem. Phys.
93
,
5182
(
1990
).
85.
W. C.
Swope
and
H. C.
Andersen
,
Phys. Rev. B
41
,
7042
(
1990
).
86.
F. C.
Frank
,
Proc. R. Soc. London Ser. A
215
,
43
(
1952
).
This content is only available via PDF.
You do not currently have access to this content.