Prominent among the classes of collective excitations in liquids that one would like to study are those which are compelled to obey some sort of conservation law. The instantaneous normal modes of liquid (which must be translationally invariant or, equivalently, conserve momentum) comprise one such example. The set of relaxation pathways dictated by a master‐equation description of energy transfer in a liquid—which must conserve probability—constitutes another. We show that these conservation laws do impose fairly stringent requirements on the nature of the collective behavior, but the resulting excitations can nonetheless be described by liquid‐theory methods. Within linear liquid theories, the desired distribution of modes ends up being a combination of a delocalized electronic‐band‐like portion and a fluctuating local field contribution. We illustrate the results with an explicit calculation (at the master‐equation level) of energy‐transfer kinetics in a liquid.

1.
B.-C.
Xu
and
R. M.
Stratt
,
J. Chem. Phys.
91
,
5613
(
1989
);
Z.
Chen
and
R. M.
Stratt
,
J. Chem. Phys.
94
,
1426
(
1991
).,
J. Chem. Phys.
2.
D. E.
Logan
and
M. D.
Winn
,
J. Phys. C
21
,
5773
(
1988
);
M. D.
Winn
and
D. E.
Logan
,
J. Phys. Condens. Matter
1
,
1753
and
(
1989
).
3.
K.
Ganguly
and
R. M.
Stratt
,
J. Chem. Phys.
95
,
4418
(
1991
);
K.
Ganguly
and
R. M.
Stratt
,
97
,
1980
(
1992
).,
J. Chem. Phys.
4.
Z.
Chen
and
R. M.
Stratt
,
J. Chem. Phys.
95
,
2669
(
1991
).
5.
B.-C.
Xu
and
R. M.
Stratt
,
J. Chem. Phys.
92
,
1923
(
1990
);
M.
Buchner
,
B. M.
Ladanyi
, and
R. M.
Stratt
,
J. Chem. Phys.
97
,
8522
(
1992
).,
J. Chem. Phys.
6.
T.-M.
Wu
and
R. F.
Loring
,
J. Chem. Phys.
97
,
8568
(
1992
).
7.
G.
Seeley
and
T.
Keyes
,
J. Chem. Phys.
91
,
5581
(
1989
);
B.
Madan
,
T.
Keyes
, and
G.
Seeley
,
J. Chem. Phys.
92
,
7565
(
1990
); ,
J. Chem. Phys.
B.
Madan
,
T.
Keyes
, and
G.
Seeley
,
94
,
6762
(
1991
); ,
J. Chem. Phys.
G.
Seeley
,
T.
Keyes
, and
B.
Madan
,
J. Chem. Phys.
95
,
3847
(
1991
); ,
J. Chem. Phys.
G.
Seeley
,
T.
Keyes
, and
B.
Madan
,
J. Phys. Chem.
96
,
4074
(
1992
);
B. Madan and T. Keyes (preprint).
8.
R. O.
Rosenberg
,
D.
Thirumalai
, and
R. D.
Mountain
,
J. Phys. Condens. Matter
1
,
2109
(
1989
);
J. E. Straub and D. Thirumalai, to appear in Proc. Natl. Acad. Sci. (USA).
9.
R. A.
LaViolette
and
F. H.
Stillinger
,
J. Chem. Phys.
83
,
4079
(
1985
).
10.
C. R.
Gouchanour
and
M. D.
Fayer
,
J. Phys. Chem.
85
,
1989
(
1981
);
R. J. D.
Miller
,
M.
Pierre
, and
M. D.
Fayer
,
J. Chem. Phys.
78
,
5138
(
1983
).
11.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), Chap. 5.
12.
G. H.
Weiss
and
R. J.
Rubin
,
Adv. Chem. Phys.
52
,
363
(
1983
).
13.
S.
Haan
and
R.
Zwanzig
,
J. Chem. Phys.
68
,
1879
(
1978
).
14.
C. R.
Gouchanour
,
H. C.
Andersen
, and
M. D.
Fayer
,
J. Chem. Phys.
70
,
4254
(
1979
);
R. F.
Loring
,
H. C.
Andersen
, and
M. D.
Fayer
,
J. Chem. Phys.
76
,
2015
(
1982
); ,
J. Chem. Phys.
R. F.
Loring
,
H. C.
Andersen
, and
M. D.
Fayer
,
77
,
1079
(
1982
).,
J. Chem. Phys.
15.
The preceding references include only the small subset of the literature most relevant to the solution of master equations in topologically disordered systems. Closest in spirit among the more lattice-based developments are the effective-medium-theory studies:
D. L.
Huber
,
Phys. Rev. B
20
,
2307
and
(
1979
);
B.
Movaghar
,
J. Phys. C
13
,
4915
(
1980
);
I.
Webman
,
Phys. Rev. Lett.
47
,
1496
(
1981
);
T.
Odagaki
and
M.
Lax
,
Phys. Rev. B
24
,
5284
(
1981
);
G.
Korzeniewski
,
R.
Friesner
, and
R.
Silbey
,
J. Stat. Phys.
31
,
451
(
1983
).
16.
The analogy between vibrations and random walks (as described, for example, by master equations) has been exploited repeatedly in the literature:
S.
Alexander
,
J.
Bernasconi
,
W. R.
Schneider
, and
R.
Orbach
,
Rev. Mod. Phys.
53
,
175
(
1981
);
S.
Alexander
and
R.
Orbach
,
J. Phys. (Paris) Lett.
43
,
L625
(
1982
);
B.
Derrida
,
R.
Orbach
, and
K.-W.
Yu
,
Phys. Rev. B
29
,
6645
(
1984
);
R. F.
Loring
and
S.
Mukamel
,
Phys. Rev. B
34
,
6582
(
1986
). See also, Ref. 6.,
Phys. Rev. B
17.
S. H.
Simon
,
V.
Dobrosavljevic
, and
R. M.
Stratt
,
J. Chem. Phys.
93
,
2640
(
1990
).
18.
A. M.
Stoneham
,
Rev. Mod. Phys.
41
,
82
(
1969
).
19.
D. E.
Logan
,
J. Chem. Phys.
94
,
628
(
1991
);
F.
Siringo
and
D. E.
Logan
,
J. Phys. Condens. Matter
3
,
4747
(
1991
);
D. E.
Logan
and
F.
Siringo
,
J. Phys. Condens. Matter
4
,
3695
(
1992
).,
J. Phys. Condens. Matter
20.
I.
Balberg
,
Philos. Mag. B
56
,
991
(
1987
);
G. E.
Pike
and
C. H.
Seager
,
Phys. Rev. B
10
,
1421
(
1974
).
21.
G.
Stell
,
J. Phys. A
17
,
L855
(
1984
);
Y. C.
Chiew
,
G.
Stell
, and
E. D.
Glandt
,
J. Chem. Phys.
83
,
761
(
1985
);
Y. C.
Chiew
and
G.
Stell
,
J. Chem. Phys.
90
,
4956
(
1989
).,
J. Chem. Phys.
22.
T.
DeSimone
,
S.
Demoulini
, and
R. M.
Stratt
,
J. Chem. Phys.
85
,
391
(
1986
);
S. B.
Lee
and
S.
Torquato
,
J. Chem. Phys.
89
,
6427
(
1988
).,
J. Chem. Phys.
23.
A. L. R.
Bug
,
S. A.
Safran
,
G. S.
Grest
, and
I.
Webman
,
Phys. Rev. Lett.
55
,
1896
(
1985
).
24.
S. C.
Netemeyer
and
E. D.
Glandt
,
J. Chem. Phys.
85
,
6054
(
1986
);
A. K.
Sen
and
S.
Toquato
,
J. Chem. Phys.
89
,
3799
(
1988
).,
J. Chem. Phys.
25.
J.
Xu
and
G.
Stell
,
J. Chem. Phys.
89
,
1101
(
1988
).
26.
D.
Laria
and
F.
Vericat
,
Phys. Rev. A
43
,
1932
(
1991
).
27.
T.
Odagaki
and
M.
Lax
,
Phys. Rev. B
26
,
6480
(
1982
);
A. J. Schwenk and R. J. Wilson, in Selected Topics in Graph Theory, edited by L. W. Beinke and R. J. Wilson (Academic, London, 1978), p. 307;
J. W.
Essam
and
M. E.
Fisher
,
Rev. Mod. Phys.
42
,
272
(
1970
).
28.
S. Kirkpatrick, in III-Condensed Matter, edited by R. Balian, R. Maynard, and G. Toulouse (North-Holland, Amsterdam, 1983);
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
29.
N.
Rivier
,
Adv. Phys.
36
,
95
(
1987
).
30.
A.
Baram
and
J. S.
Rowlinson
,
Mol. Phys.
74
,
707
(
1991
).
31.
See, for example,
H. M.
Sevian
and
J. L.
Skinner
,
J. Chem. Phys.
97
,
8
(
1992
);
H. M.
Sevian
and
J. L.
Skinner
,
Theor. Chim. Acta
82
,
29
(
1992
);
I.
Messing
,
B.
Raz
, and
J.
Jortner
,
J. Chem. Phys.
66
,
2239
and
(
1977
).
32.
Based on the additivity of both the first and second cumulants of the band and local-field components, it is natural to wonder whether higher cumulants would also satisfy the same rule—which would imply that the conserved mode spectrum would be a convolution of its two parts. However, one can show by explicit counter example that the analogous third-cumulant condition is not satisfied in general.
33.
R. M.
Stratt
,
Adv. Chem. Phys.
78
,
1
(
1990
).
34.
E. N. Economou, Green’s Functions in Quantum Physics, 2nd ed. (Springer, Berlin, 1983).
35.
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
Adv. Chem. Phys.
34
,
105
(
1976
).
36.
The Hamiltonian of the effective liquid is O(n) symmetric in the replica indices. We are assuming here that this replica symmetry remains unbroken.
37.
We have confirmed, both here and at later stages of the calculation, that if one were careful to keep n finite throughout (taking the n→0 limit only at the end), one would obtain the same results as in the more abbreviated derivation presented in the text.
38.
Inside the core, the function Φ(rl2,X1,x2) can, in principle, have a more general dependence on internal coordinates than the function φ(r12,x1,x2) does. Such an eventuality would result in a different integral equation. See,
S. G.
Desjardins
and
R. M.
Stratt
,
J. Chem. Phys.
81
,
6232
(
1984
). However, this possibility is not realized here, even for finite n.
39.
Z.
Chen
and
R. M.
Stratt
,
J. Chem. Phys.
97
,
5687
and
(
1992
).
40.
D.
Chandler
and
L. R.
Pratt
,
J. Chem. Phys.
65
,
2925
(
1976
).
41.
F.
Lado
,
Phys. Rev. A
42
,
7281
(
1990
).
42.
M. Abramowitz and I. A. Segun, Handbook of Mathematical Functions (Dover, New York, 1970), Chap. 7.
43.
An alternative correction series is given by Messing, Raz and Jortner (Ref. 31).
44.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 1st ed. (Academic, London, 1976), p. 85. The discussion of bipolar coordinates is omitted in the 2nd edition.
45.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1986), Chap. 4.
46.
Ref. 45, Chap. 2.
47.
Ref. 45, Chap. 9.
48.
D. L.
Huber
,
J. Chem. Phys.
81
,
689
(
1984
);
R. F.
Loring
,
D. S.
Franchi
, and
S.
Mukamel
,
J. Chem. Phys.
86
,
1323
(
1987
).,
J. Chem. Phys.
49.
Xu and Stell (Ref. 25) have discussed the concept of what they call “percolation-in-probability" in liquids. Exploring the connections with our infinite-range hopping probabilities should prove illuminating.
50.
R. F.
Loring
,
J. Chem. Phys.
92
,
1598
(
1990
).
51.
J. S.
Ho/ye
and
G.
Stell
,
J. Chem. Phys.
75
,
5133
(
1981
);
M. J.
Thompson
,
K. S.
Schweizer
, and
D.
Chandler
,
J. Chem. Phys.
76
,
1128
(
1982
); ,
J. Chem. Phys.
J. S.
Ho/ye
and
K.
Olaussen
,
J. Chem. Phys.
77
,
2583
(
1982
); ,
J. Chem. Phys.
D.
Chandler
,
K. S.
Schweizer
, and
P. G.
Wolynes
,
Phys. Rev. Lett.
49
,
1100
(
1982
);
D. E.
Logan
,
Chem. Phys. Lett.
112
,
335
(
1984
);
K. S.
Schweizer
,
J. Chem. Phys.
85
,
4638
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.