A study of the vibrational predissociation of the van der Waals complex NeICl on the B electronic surface, NeICl (B, v=2) to Ne+ICl (B, v=1, j), was conducted using the discrete variable representation (DVR) formulation of the complex coordinate method. The resonance positions, widths, and wave functions were inferred from the complex eigenvalues and eigenvectors of the complex scaled Hamiltonian matrix. Assignment of the various states was done by the natural expansion analysis. The natural expansion analysis provides a rigorous criterion as to the separability of the different modes in a given coordinate system, and allows for quantum number assignment to the vibrational, stretching, and bending modes of NeICl. The rotational distribution of the ICl fragment after dissociation was obtained by the asymptotic analysis of the tail of the complex scaled square‐integrable resonance wave functions and was found to be in good agreement with theoretical results previously obtained for this system by Roncero etal. [J. Chem. Phys. 92, 3348 (1990)] and with experimental measurements by Skene, Drobits, and Lester [J. Chem. Phys. 85, 2329 (1986)].

1.
D. H.
Levy
,
Adv. Chem. Phys.
47
,
323
(
1981
).
2.
K. C.
Janda
,
Adv. Chem. Phys.
60
,
201
(
1985
).
3.
J. A.
Beswick
and
J.
Jortner
,
Adv. Chem. Phys.
47
,
363
(
1981
).
4.
G. E.
Ewing
,
J. Phys. Chem.
91
,
4662
(
1987
).
5.
K. C. Janda and C. R. Bieler, Atomic and Molecular Clusters, edited by E. R. Bernstein (Elsevier, Amsterdam, 1990), Chap. 6.
6.
R. E.
Miller
,
J. Phys. Chem.
90
,
3301
(
1986
).
7.
G. G.
Balint-Kurti
and
M.
Shapiro
,
Adv. Chem. Phys.
60
,
403
(
1985
).
8.
I. F.
Kidd
and
G. G.
Balint-Kurti
,
Chem. Phys. Lett.
101
,
419
(
1983
).
9.
N.
Halberstadt
,
J. A.
Beswick
, and
K. C.
Janda
,
J. Chem. Phys.
87
,
3966
(
1987
).
10.
O.
Roncero
,
J. A.
Beswick
,
N.
Halberstadt
,
P.
Villarreal
, and
G.
Delgado-Barrio
,
J. Chem. Phys.
92
,
3348
(
1990
).
11.
C. M.
Lovejoy
and
D. J.
Nesbitt
,
J. Chem. Phys.
93
,
5387
(
1980
).
12.
C. J.
Ashton
,
M. S.
Child
, and
J. M.
Huston
,
J. Chem. Phys.
78
,
4025
(
1983
).
13.
J. M.
Huston
and
R. J.
LeRoy
,
J. Chem. Phys.
78
,
4040
(
1983
).
14.
J. A.
Beswick
and
A.
Requena
,
J. Chem. Phys.
72
,
3018
(
1980
).
15.
J. A.
Beswick
and
A.
Requena
,
J. Chem. Phys.
73
,
4347
(
1980
).
16.
J. A.
Beswick
and
G.
Delgado-Barrio
,
J. Chem. Phys.
73
,
3653
(
1980
).
17.
O.
Roncero
,
S.
Miret-Artés
,
G.
Delgado-Barrio
, and
P.
Villarreal
,
J. Chem. Phys.
85
,
2084
(
1986
).
18.
J. A.
Beswick
,
G.
Delgado-Barrio
, and
J.
Jortner
,
J. Chem. Phys.
70
,
3895
(
1979
).
19.
R. L.
Waterland
,
M. I.
Lester
, and
N.
Halberstadt
,
J. Chem. Phys.
92
,
4261
(
1990
).
20.
S. K.
Gray
,
S. A.
Rice
, and
D. W.
Noid
,
J. Chem. Phys.
84
,
3745
(
1986
).
21.
G.
Delgado-Barrio
,
P.
Villarreal
,
P.
Mareca
, and
J. A.
Beswick
,
J. Mol. Struct.
120
,
303
(
1985
);
G.
Delgado-Barrio
,
P.
Villarreal
,
P.
Mareca
, and
J. A.
Beswick
,
J. Comput. Chem.
5
,
322
(
1984
).
22.
B.
Woodruff
and
D. L.
Thompson
,
J. Chem. Phys.
71
,
376
(
1979
).
23.
N. Halberstadt, R. Schinke, and J. A. Beswick, in AIP Conference Proceedings No. 225, edited by M. Garcia-Sucre, G. Reseev, and S. C. Ross (AIP, New York, 1991).
24.
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
,
J. Chem. Phys.
77
,
3022
(
1982
).
25.
G. C.
Schatz
,
V.
Buch
,
M. A.
Ratner
, and
R. B.
Gerber
,
J. Chem. Phys.
79
,
1808
(
1983
).
26.
R. H.
Bisseling
,
R.
Kosloff
,
R. B.
Gerber
,
M. A.
Ratner
,
L.
Gibson
, and
C.
Cerjan
,
J. Chem. Phys.
87
,
2760
(
1987
).
27.
R.
Viswanathan
,
R. M.
Raff
, and
D. L.
Thompson
,
J. Chem. Phys.
77
,
3939
(
1982
).
28.
S. K.
Gray
and
C. E.
Wozny
,
J. Chem. Phys.
91
,
7671
(
1989
).
29.
S. K.
Gray
and
C. E.
Wozny
,
J. Chem. Phys.
94
,
2817
(
1991
).
30.
P.
Villarreal
,
S.
Miret-Artés
,
O.
Roncero
,
G.
Delgado-Barrio
,
J. A.
Beswick
,
N.
Halberstadt
, and
R. D.
Coalsovy
,
J. Chem. Phys.
94
,
4230
(
1991
).
31.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
95
,
6449
(
1991
).
32.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Phys. Chem.
96
,
1575
(
1992
).
33.
W. P.
Reinhardt
,
Annu. Rev. Phys. Chem.
33
,
223
(
1983
).
34.
B. R.
Junker
,
Adv. At. Mol. Phys.
18
,
207
(
1982
).
35.
Y. K.
Ho
,
Phys. Rep.
99
,
1
(
1983
).
36.
N. Moiseyev, Lecture Notes in Physics (Springer-Verlag, New York, 1984), Vol. 211, p. 235;
Isr. J. Chem.
31
,
311
(
1991
).
37.
N.
Moiseyev
and
J. O.
Hirschfelder
,
J. Chem. Phys.
88
,
1063
(
1988
).
38.
N.
Moiseyev
,
P. R.
Certain
, and
F.
Weinhold
,
Mol. Phys.
36
,
1613
(
1978
).
39.
N.
Moiseyev
,
S.
Friendland
, and
P. R.
Certain
,
J. Chem. Phys.
74
,
4739
(
1981
).
40.
U.
Peskin
,
N.
Moiseyev
, and
R.
Lefebvre
,
J. Chem. Phys.
92
,
2902
(
1990
).
41.
N.
Moiseyev
and
U.
Peskin
,
Phys. Rev. A
42
,
255
(
1990
).
42.
G. P.
Doolen
,
Int. J. Quantum Chem.
14
,
4
(
1978
).
43.
N.
Moiseyev
and
C. T.
Corcoran
,
Phys. Rev. A
20
,
814
(
1979
).
44.
R.
Lefebvre
,
Chem. Phys. Lett.
70
,
430
(
1980
).
45.
N.
Moiseyev
,
Int. J. Quantum Chem.
20
,
835
(
1981
).
46.
N.
Moiseyev
,
T.
Maniv
,
R.
Elber
, and
R. B.
Gerber
,
Mol. Phys.
55
,
1369
(
1985
).
47.
T.
Maniv
,
E.
Engdahl
, and
N.
Moiseyev
,
J. Chem. Phys.
86
,
1048
(
1987
).
48.
A.
Ben-Ephraim
,
M.
Folman
,
J.
Heidberg
, and
N.
Moiseyev
,
J. Chem. Phys.
89
,
3840
(
1988
).
49.
U.
Peskin
and
N.
Moiseyev
,
J. Chem. Phys.
96
,
2347
(
1992
).
50.
S. I.
Chu
,
J. Chem. Phys.
72
,
4772
(
1980
).
51.
S. I.
Chu
and
K. K.
Datta
,
J. Chem. Phys.
76
,
5307
(
1982
).
52.
S. I.
Chu
,
Chem. Phys. Lett.
88
,
213
(
1982
);
S. I.
Chu
,
ACS Symp. Ser.
263
,
261
(
1984
).
53.
N.
Moiseyev
and
P. R.
Certain
,
J. Phys. Chem.
89
,
3853
(
1985
).
54.
P. R.
Certain
and
N.
Moiseyev
,
J. Phys. Chem.
89
,
2974
(
1985
).
55.
Z.
Bačic
and
J.
Simons
,
Int. J. Quantum Chem.
21
,
727
(
1982
).
56.
R.
Lefebvre
,
J. Phys. Chem.
88
,
4839
(
1984
).
57.
Z.
Bačic
and
J. C.
Light
,
J. Chem. Phys.
85
,
4594
(
1986
).
58.
Z.
Bačic
and
J. C.
Light
,
J. Chem. Phys.
86
,
3065
(
1986
).
59.
N.
Lipkin
,
N.
Moiseyev
, and
P. R.
Certain
,
Theor. Chim. Acta
82
,
47
(
1992
).
60.
J. M.
Skene
,
J. C.
Drobits
, and
M. I.
Lester
,
J. Chem. Phys.
85
,
2329
(
1986
).
61.
A. F. S.
Siegert
,
Phys. Rev.
56
,
750
(
1939
).
62.
R.
Yaris
and
H. S.
Taylor
,
Chem. Phys. Lett.
66
,
505
(
1979
).
63.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1988), p. 377.
64.
B. K.
Holmer
and
P. R.
Certain
,
J. Phys. Chem.
89
,
4464
(
1985
).
65.
N.
Moiseyev
,
R.
Schatzberger
,
P.
Frolich
, and
O.
Goscinski
,
J. Chem. Phys.
83
,
3924
(
1985
).
66.
N.
Moiseyev
,
R. C.
Brown
,
R. E.
Wyatt
, and
E.
Tzidoni
,
Chem. Phys. Lett.
127
,
166
(
1986
).
67.
N.
Moiseyev
,
R. A.
Friesner
, and
R. E.
Wyatt
,
J. Chem. Phys.
85
,
331
(
1986
).
68.
N.
Moiseyev
and
R. E.
Wyatt
,
Chem. Phys. Lett.
132
,
396
(
1986
).
69.
N.
Moiseyev
and
H. J.
Korsch
,
Isr. J. Chem.
30
,
107
(
1990
).
70.
E.
Engdahl
,
T.
Maniv
, and
N.
Moiseyev
,
J. Chem. Phys.
88
,
5864
(
1988
).
71.
P.
Froelich
and
S. A.
Alexander
,
Phys. Rev. A
42
,
2550
(
1990
).
72.
N.
Lipkin
,
N.
Moiseyev
, and
C.
Leforestier
,
J. Chem. Phys.
92
,
227
(
1990
).
73.
N.
Halberstadt
,
Ph.
Bréchignac
,
J. A.
Beswick
, and
M.
Shapiro
,
J. Chem. Phys.
84
,
170
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.