Molecular dynamics (MD) simulations of argon in silicalite were performed in order to study the transition from the deterministic motion at short times to the random motion at long times. A characteristic length λ (time τ) is associated with this change in dynamics. At a temperature T=229(14) K, we find λ=0.45(8) Å [τ=0.21(6) ps]. A detailed analysis of the trajectories shows that the optimal choice for the elementary time step Δt in MD is slightly below τ. Little is gained by decreasing Δt as two trajectories with almost identical initial conditions diverge exponentially fast with time. A MD algorithm with variable Δt is proposed and used to show that the size of the zeolite channels and cavities influences how the asymptotic Gaussian random process is reached.

1.
Studies in Surface Science and Catalysis: Catalysis by Zeolites, edited by B. Imelik, C. Naccache, Y. Ben Taarit, J. C. Vedrine, G. Coudurier, and H. Praliaud (Elsevier, Amsterdam, 1980), Vol. 5.
2.
J.
Karger
and
J.
Caro
,
J. Chem. Soc., Faraday Trans. 1
73
,
1363
(
1977
).
3.
A. S.
Chiang
,
A. G.
Dixon
, and
H. Y.
Ma
,
Chem. Eng. Sci.
39
,
1461
(
1984
).
4.
D. T.
Hayhurst
and
A. R.
Paravar
,
Zeolites
8
,
27
(
1988
).
5.
J.
Caro
,
M.
Bülow
,
W.
Schirmer
,
J.
Karger
,
W.
Heink
, and
H.
Pfeifer
,
J. Chem. Soc., Faraday Trans. 1
81
,
2541
(
1985
).
6.
H.
Jobic
,
M.
Bée
,
J.
Caro
,
M.
Bülow
, and
J.
Kärger
,
J. Chem. Soc., Faraday Trans. 1
85
,
4201
(
1989
).
7.
J.
Kärger
and
D.
Ruthven
,
Zeolites
9
,
267
(
1989
).
8.
A. V.
Kiselev
,
Adv. Chem. Ser.
102
,
37
(
1971
).
9.
A. V.
Kiselev
,
A. A.
Lopatkin
, and
A. A.
Shulga
,
Zeolites
5
,
261
(
1985
).
10.
P. A.
Wright
,
J. M.
Thomas
,
A. K.
Cheetham
, and
A. K.
Nowak
,
Nature
318
,
611
(
1985
).
11.
A. K.
Nowak
,
A. K.
Cheetham
,
S. D.
Pickett
, and
S.
Ramdas
,
Mol. Simul.
1
,
67
(
1987
).
12.
L. Leherte, D. P. Vercauteren, E. G. Derouane, and J. M. André, in Innovation in Zeolite Materials Science, edited by P. J. Grobet, W. J. Mortier, E. F. Vansant, and G. Schulz-Ekloff (Elsevier, Amsterdam, 1987), p. 293.
13.
F.
Vigné-Maeder
and
A.
Auroux
,
J. Chem. Phys.
94
,
316
(
1990
).
14.
S. D.
Pickett
,
A. K.
Nowak
,
J. M.
Thomas
,
B. K.
Peterson
,
J. F. P.
Swift
,
A. K.
Cheetham
,
C. J. J.
den Ouden
,
B.
Smit
, and
M. F. M.
Post
,
J. Phys. Chem.
94
,
1233
(
1990
).
15.
R. L.
June
,
A. T.
Bell
, and
D. N.
Theodorou
,
J. Phys. Chem.
94
,
8232
(
1990
).
16.
E.
Cohen De Lara
,
R.
Kahn
, and
A. M.
Goulay
,
J. Chem. Phys.
90
,
7482
(
1989
).
17.
S.
Yashonath
,
P.
Demontis
, and
M. L.
Klein
,
Chem. Phys. Lett.
153
,
551
(
1988
).
18.
E.
Aust
,
K.
Dahlke
, and
G.
Emig
,
J. Catal.
115
,
86
(
1989
).
19.
C. J. J.
den Ouden
,
B.
Smit
,
A. F. H.
Wielers
,
R. A.
Jackson
, and
A. K.
Nowak
,
Mol. Simul.
4
,
121
(
1989
).
20.
G. B.
Suffriti
and
A.
Gamba
,
Int. Rev. Phys. Chem.
6
,
299
(
1987
).
21.
F.
Vigné-Maeder
,
J. Catal.
117
,
566
(
1989
).
22.
S. El Amranf, thesis, Villeurbanne, 1990.
23.
D. H.
Olson
,
G. T.
Kokotailo
, and
S. L.
Lawton
,
J. Phys. Chem.
85
,
2238
(
1981
).
24.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
25.
D. M.
Heyses
,
Chem. Phys.
82
,
285
(
1983
).
26.
P.
Demontis
,
E. S.
Fois
,
G.
Suffriti
, and
S.
Quartieri
,
J. Chem. Inf. Cap. Sci.
4
,
30
(
1990
).
27.
P. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987).
This content is only available via PDF.
You do not currently have access to this content.